Python实现二分查找算法实例

本文实例讲述了Python实现二分查找算法的方法。分享给大家供大家参考。具体实现方法如下:

#!/usr/bin/env python
import sys
def search2(a,m):
  low = 0
  high = len(a) - 1
  while(low <= high):
    mid = (low + high)/2
    midval = a[mid]
    if midval < m:
      low = mid + 1
    elif midval > m:
      high = mid - 1
    else:
      print mid
      return mid
  print -1
  return -1
if __name__ == "__main__":
  a = [int(i) for i in list(sys.argv[1])]
  m = int(sys.argv[2])
  search2(a,m)

运行:

administrator@ubuntu:~/Python$ python test_search2.py 123456789 4
3

注:

1.'__':由于python的类成员都是公有、公开的被存取public,缺少像正统面向对象语言的私有private属性。

于是就用__来将就一下,模拟私有属性。这些__属性往往是内部使用,通常情况下不用改写。也不用读取。

加上2个下划线的目的,一是不和普通公有属性重名冲突,二是不让对象的使用者(非开发者)随意使用。

2.__name__ == "__main__"表示程序脚本是直接被执行的.
如果不等于表示脚本是被其他程序用import引入的.则其__name__属性被设为模块名

希望本文所述对大家的Python程序设计有所帮助。

(0)

相关推荐

  • python二分查找算法的递归实现方法

    本文实例讲述了python二分查找算法的递归实现方法.分享给大家供大家参考,具体如下: 这里先提供一段二分查找的代码: def binarySearch(alist, item): first = 0 last = len(alist)-1 found = False while first<=last and not found: midpoint = (first + last)//2 if alist[midpoint] == item: found = True else: if ite

  • Python基于二分查找实现求整数平方根的方法

    本文实例讲述了Python基于二分查找实现求整数平方根的方法.分享给大家供大家参考,具体如下: x=int(raw_input('please input a int:')) if x<0: retrun -1 low=0 high=x ans=(low+high)/2.0 sign=ans while ans**2 !=x: if ans**2>x: high=ans else: low=ans ans=(low+high)/2.0 if sign==ans: break print ans

  • Python实现二分查找与bisect模块详解

    前言 其实Python 的列表(list)内部实现是一个数组,也就是一个线性表.在列表中查找元素可以使用 list.index() 方法,其时间复杂度为O(n) .对于大数据量,则可以用二分查找进行优化. 二分查找要求对象必须有序,其基本原理如下: 1.从数组的中间元素开始,如果中间元素正好是要查找的元素,则搜素过程结束: 2.如果某一特定元素大于或者小于中间元素,则在数组大于或小于中间元素的那一半中查找,而且跟开始一样从中间元素开始比较. 3.如果在某一步骤数组为空,则代表找不到. 二分查找也

  • Python二分查找详解

    先来看个实例 #!/usr/bin/env python import sys def search2(a,m): low = 0 high = len(a) - 1 while(low <= high): mid = (low + high)/2 midval = a[mid] if midval < m: low = mid + 1 elif midval > m: high = mid - 1 else: print mid return mid print -1 return -

  • python实现二分查找算法

    二分查找算法:简单的说,就是将一个数组先排序好,比如按照从小到大的顺序排列好,当给定一个数据,比如target,查找target在数组中的位置时,可以先找到数组中间的数array[middle]和target进行比较,当它比target小时,那么target一定是在数组的右边,反之,则target在数组的左边,比如它比target小,则下次就可以只比较[middle+1, end]的数,继续使用二分法,将它一分为二,直到找到target这个数返回或者数组全部遍历完成(target不在数组中) 优

  • 简介二分查找算法与相关的Python实现示例

    二分查找Binary Search的思想: 以有序表表示静态查找表时,查找函数可以用二分查找来实现. 二分查找(Binary Search)的查找过程是:先确定待查记录所在的区间,然后逐步缩小区间直到找到或找不到该记录为止. 1二分查找的时间复杂度是O(log(n)),最坏情况下的时间复杂度是O(n). 假设 low 指向区间下界,high 指向区间上界,mid 指向区间的中间位置,则 mid  = (low + high) / 2; 具体过程: 1.先将关键字与 mid 指向的元素比较,如果相

  • Python实现二分查找算法实例

    本文实例讲述了Python实现二分查找算法的方法.分享给大家供大家参考.具体实现方法如下: #!/usr/bin/env python import sys def search2(a,m): low = 0 high = len(a) - 1 while(low <= high): mid = (low + high)/2 midval = a[mid] if midval < m: low = mid + 1 elif midval > m: high = mid - 1 else:

  • Java实现二分查找算法实例分析

    本文实例讲述了Java实现二分查找算法.分享给大家供大家参考.具体如下: 1. 前提:二分查找的前提是需要查找的数组必须是已排序的,我们这里的实现默认为升序 2. 原理:将数组分为三部分,依次是中值(所谓的中值就是数组中间位置的那个值)前,中值,中值后:将要查找的值和数组的中值进行比较,若小于中值则在中值前面找,若大于中值则在中值后面找,等于中值时直接返回.然后依次是一个递归过程,将前半部分或者后半部分继续分解为三部分.可能描述得不是很清楚,若是不理解可以去网上找.从描述上就可以看出这个算法适合

  • js实现的二分查找算法实例

    本文实例讲述了js实现的二分查找算法.分享给大家供大家参考,具体如下: <!DOCTYPE html> <html> <head> <title>demo</title> <style type="text/css"> </style> <script type="text/javascript"> var binarySearch = function(array, s

  • C++二分查找算法实例

    本文实例为大家分享C++二分查找算法,通过改变边界位置来进行查找的方法,代码如下: #include <iostream> using namespace std; int search(int *p,int length,int key); int search1(int *p,int length,int key); int main() { cout << "Hello world!" << endl; int a[] = {1,2,3,4,5

  • C#二分查找算法实例分析

    本文实例讲述了C#二分查找算法.分享给大家供大家参考.具体实现方法如下: // input array is assumed to be sorted public int BinarySearch(int[] arr, int x) { if (arr.Length == 0) return -1; int mid = arr.Length / 2; if (arr[mid] == x) return mid; if (x < arr[mid]) return BinarySearch(Get

  • PHP实现的二分查找算法实例分析

    本文实例讲述了PHP实现的二分查找算法.分享给大家供大家参考,具体如下: 二分查找法需要数组是一个有序的数组 假设我们的数组是一个递增的数组,首先我们需要找到数组的中间位置. 一.要知道中间位置就需要知道起始位置和结束位置,然后取出中间位置的值来和我们的值做对比. 二.如果中间值大于我们的给定值,说明我们的值在中间位置之前,此时需要再次二分,因为在中间之前,所以我们需要变的值是结束位置的值,此时结束位置的值应该是我们此时的中间位置. 三.反之,如果中间值小于我们给定的值,那么说明给定值在中间位置

  • Python递归函数 二分查找算法实现解析

    一.初始递归 递归函数:在一个函数里在调用这个函数本身. 递归的最大深度:998 正如你们刚刚看到的,递归函数如果不受到外力的阻止会一直执行下去.但是我们之前已经说过关于函数调用的问题,每一次函数调用都会产生一个属于它自己的名称空间,如果一直调用下去,就会造成名称空间占用太多内存的问题,于是python为了杜绝此类现象,强制的将递归层数控制在了997(只要997!你买不了吃亏,买不了上当...). 拿什么来证明这个"998理论"呢?这里我们可以做一个实验: def foo(n): pr

  • Python如何实现的二分查找算法

    先来看个用Python实现的二分查找算法实例 import sys def search2(a,m): low = 0 high = len(a) - 1 while(low <= high): mid = (low + high)/2 midval = a[mid] if midval < m: low = mid + 1 elif midval > m: high = mid - 1 else: print mid return mid print -1 return -1 if _

  • PHP折半(二分)查找算法实例分析

    本文实例讲述了PHP折半(二分)查找算法.分享给大家供大家参考,具体如下: 折半查询只适用于已经按照正序或者逆序排序的数组,字符串等: 算法: 先取数组的中间位置,无中间位置,则向下取整: 从中间进行折半,大小判断,进入前半段或者后半段: 再对前半段或者后半段进行同样的折半查询, 直到查询到匹配的字符,才停止(本例用break,如果置于函数中,return即可) php实现的代码如下: <?php $arr = array(1,2,3,4,5,6,7,8,9,10);//数组 $key = 4;

随机推荐