Java多线程ThreadPoolExecutor详解

目录
  • 1 newFixedThreadPool
  • 2 newCachedThreadPool
  • 3 newSingleThreadExecutor
  • 4 提交任务
  • 5 关闭线程池

前言:

根据ThreadPoolExecutor的构造方法,JDK提供了很多工厂方法来创建各种用途的线程池.

1 newFixedThreadPool

public static ExecutorService newFixedThreadPool(int nThreads) {
 return new ThreadPoolExecutor(nThreads, nThreads,
 0L, TimeUnit.MILLISECONDS,
 new LinkedBlockingQueue<Runnable>());
}

说明:

  • 核心线程数 == 最大线程数(没有救急线程被创建),因此也无需超时时间
  • 阻塞队列是无界的,可以放任意数量的任务(最大为Integer.MAX_VALUE)

适用于 任务量一已知,相对耗时的任务

2 newCachedThreadPool

public static ExecutorService newCachedThreadPool() {
 return new ThreadPoolExecutor(0, Integer.MAX_VALUE,
 60L, TimeUnit.SECONDS,
 new SynchronousQueue<Runnable>());
}

说明:

  • 核心线程数是 0, 最大线程数是 Integer.MAX_VALUE,救急线程的空闲生存时间是 60s

    • 全部都是救急线程(60s 后可以回收)
    • 救急线程可以无限创建(最大是Integer.MAX_VALUE)
  • 队列采用了 SynchronousQueue 实现特点是,它没有容量,没有线程来取是放不进去的(一手交钱、一手交 货)

如下案例:

SynchronousQueue<Integer> integers = new SynchronousQueue<>();
new Thread(() -> {
     try {
         log.debug("putting {} ", 1);
         integers.put(1);
         log.debug("{} putted...", 1);
         log.debug("putting...{} ", 2);
         integers.put(2);
         log.debug("{} putted...", 2);
     } catch (InterruptedException e) {
         e.printStackTrace();
     }
},"t1").start();
sleep(1);
new Thread(() -> {
     try {
         log.debug("taking {}", 1);
         integers.take();
     } catch (InterruptedException e) {
         e.printStackTrace();
     }
},"t2").start();
sleep(1);
new Thread(() -> {
     try {
         log.debug("taking {}", 2);
         integers.take();
     } catch (InterruptedException e) {
         e.printStackTrace();
     }
},"t3").start();
/*
运行结果:
11:48:15.500 c.TestSynchronousQueue [t1] - putting 1
11:48:16.500 c.TestSynchronousQueue [t2] - taking 1
11:48:16.500 c.TestSynchronousQueue [t1] - 1 putted...
11:48:16.500 c.TestSynchronousQueue [t1] - putting...2
11:48:17.502 c.TestSynchronousQueue [t3] - taking 2
11:48:17.503 c.TestSynchronousQueue [t1] - 2 putted...
*/

整个线程池表现为线程数会根据任务量不断增长,没有上限,当任务执行完毕,空闲 1分钟后释放线程。

适用于 任务数比较密集,但每个任务执行时间较短的情况

3 newSingleThreadExecutor

public static ExecutorService newSingleThreadExecutor() {
 return new FinalizableDelegatedExecutorService
 (new ThreadPoolExecutor(1, 1,
 0L, TimeUnit.MILLISECONDS,
 new LinkedBlockingQueue<Runnable>()));
}

希望多个任务排队执行。线程数固定为 1,任务数多于 1 时,会放入无界队列排队。任务执行完毕,这唯一的线程也不会被释放.

与其他线程区别:

  • 自己创建一个单线程串行执行任务,如果任务执行失败而终止那么没有任何补救措施,而线程池还会新建一 个线程,保证池的正常工作
  • Executors.newSingleThreadExecutor() 线程个数始终为1,不能修改
    • FinalizableDelegatedExecutorService 应用的是装饰器模式,只对外暴露了 ExecutorService 接口,因此不能调用 ThreadPoolExecutor 中特有的方法.
  • Executors.newFixedThreadPool(1) 初始时为1,以后还可以修改
    • 对外暴露的是 ThreadPoolExecutor 对象,可以强转后调用 setCorePoolSize 等方法进行修改

4 提交任务

// 执行任务
void execute(Runnable command);
// 提交任务 task,用返回值 Future 获得任务执行结果
<T> Future<T> submit(Callable<T> task);
// 提交 tasks 中所有任务
<T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks)
 throws InterruptedException;
// 提交 tasks 中所有任务,带超时时间
<T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks,
 long timeout, TimeUnit unit)
 throws InterruptedException;
// 提交 tasks 中所有任务,哪个任务先成功执行完毕,返回此任务执行结果,其它任务取消
<T> T invokeAny(Collection<? extends Callable<T>> tasks)
 throws InterruptedException, ExecutionException;

// 提交 tasks 中所有任务,哪个任务先成功执行完毕,返回此任务执行结果,其它任务取消,带超时时间
<T> T invokeAny(Collection<? extends Callable<T>> tasks,
 long timeout, TimeUnit unit)
 throws InterruptedException, ExecutionException, TimeoutException;

上述都是提供的提交任务的方法,根据不同的业务场景需求,选择对应的提交方法.

5 关闭线程池

shutdown

/*
线程池状态变为 SHUTDOWN
- 不会接收新任务
- 但已提交任务会执行完
- 此方法不会阻塞调用线程的执行
*/
void shutdown();
public void shutdown() {
     final ReentrantLock mainLock = this.mainLock;
     mainLock.lock();
     try {
     checkShutdownAccess();
     // 修改线程池状态
     advanceRunState(SHUTDOWN);
     // 仅会打断空闲线程
     interruptIdleWorkers();
     onShutdown(); // 扩展点 ScheduledThreadPoolExecutor
     } finally {
     mainLock.unlock();
     }
     // 尝试终结(没有运行的线程可以立刻终结,如果还有运行的线程也不会等)
     tryTerminate();
}

shutdownNow

/*
线程池状态变为 STOP
- 不会接收新任务
- 会将队列中的任务返回
- 并用 interrupt 的方式中断正在执行的任务
*/
List<Runnable> shutdownNow();
public List<Runnable> shutdownNow() {
     List<Runnable> tasks;
     final ReentrantLock mainLock = this.mainLock;
     mainLock.lock();
     try {
     checkShutdownAccess();
     // 修改线程池状态
     advanceRunState(STOP);
     // 打断所有线程
     interruptWorkers();
     // 获取队列中剩余任务
     tasks = drainQueue();
     } finally {
     mainLock.unlock();
     }
     // 尝试终结
     tryTerminate();
     return tasks;
}

其他打断方法

// 不在 RUNNING 状态的线程池,此方法就返回 true
boolean isShutdown();
// 线程池状态是否是 TERMINATED
boolean isTerminated();
// 调用 shutdown 后,由于调用线程并不会等待所有任务运行结束,因此如果它想在线程池 TERMINATED 后做些事
情,可以利用此方法等待
boolean awaitTermination(long timeout, TimeUnit unit) throws InterruptedException;

到此这篇关于Java多线程ThreadPoolExecutor详解的文章就介绍到这了,更多相关Java ThreadPoolExecutor内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • java多线程CountDownLatch与线程池ThreadPoolExecutor/ExecutorService案例

    1.CountDownLatch: 一个同步工具类,它允许一个或多个线程一直等待,直到其他线程的操作执行完后再执行. 2.ThreadPoolExecutor/ExecutorService: 线程池,使用线程池可以复用线程,降低频繁创建线程造成的性能消耗,同时对线程的创建.启动.停止.销毁等操作更简便. 3.使用场景举例: 年末公司组织团建,要求每一位员工周六上午8点到公司门口集合,统一乘坐公司所租大巴前往目的地. 在这个案例中,公司作为主线程,员工作为子线程. 4.代码示例: package

  • Java线程池ThreadPoolExecutor原理及使用实例

    引导 要求:线程资源必须通过线程池提供,不允许在应用自行显式创建线程: 说明:使用线程池的好处是减少在创建和销毁线程上所花的时间以及系统资源的开销,解决资源不足的问题.如果不使用线程池,有可能造成系统创建大量同类线程而导致消耗内存或者"过度切换"的问题. 线程池介绍线程池概述   线程池,顾名思义是一个放着线程的池子,这个池子的线程主要是用来执行任务的.当用户提交任务时,线程池会创建线程去执行任务,若任务超过了核心线程数的时候,会在一个任务队列里进行排队等待,这个详细流程,我们会后面细

  • Java多线程同步工具类CountDownLatch详解

    目录 简介 核心方法 CountDownLatch如何使用 CountDownLatch运行流程 运用场景 总结 简介 CountDownLatch是一个多线程同步工具类,在多线程环境中它允许多个线程处于等待状态,直到前面的线程执行结束.从类名上看CountDown既是数量递减的意思,我们可以把它理解为计数器. 核心方法 countDown():计数器递减方法. await():使调用此方法的线程进入等待状态,直到计数器计数为0时主线程才会被唤醒. await(long, TimeUnit):在

  • Java详解实现多线程的四种方式总结

    目录 前言 一.四种方式实现多线程 1.继承Thread类创建线程 2.实现Runnable接口创建线程 3.实现Callable接口 4.实现有返回结果的线程 二.多线程相关知识 1.Runnable 和 Callable 的区别 2.如何启动一个新线程.调用 start 和 run 方法的区别 3.线程相关的基本方法 4.wait()和 sleep()的区别 5.多线程原理 前言 Java多线程实现方式主要有四种: ① 继承Thread类.实现Runnable接口 ② 实现Callable接

  • Java多线程run方法中直接调用service业务类应注意的问题及解决

    目录 多线程run方法中直接调用service业务类应注意 图解如下 多线程知识点 线程启动的四种方式 使用@Aysnc注解实现多线程 用户线程与守护线程的区别 线程的六种状态 Java锁的可重入性 线程池的四种拒绝策略 sleep和wait的区别 为什么wait(),notify(),notifyAll()在对象中,而不在Thread类中 多线程run方法中直接调用service业务类应注意 Java多线程run方法里边使用service业务类会产生java.lang.NullPointerE

  • java线程池ThreadPoolExecutor类使用详解

    在<阿里巴巴java开发手册>中指出了线程资源必须通过线程池提供,不允许在应用中自行显示的创建线程,这样一方面是线程的创建更加规范,可以合理控制开辟线程的数量:另一方面线程的细节管理交给线程池处理,优化了资源的开销.而线程池不允许使用Executors去创建,而要通过ThreadPoolExecutor方式,这一方面是由于jdk中Executor框架虽然提供了如newFixedThreadPool().newSingleThreadExecutor().newCachedThreadPool(

  • java 定时器线程池(ScheduledThreadPoolExecutor)的实现

    前言 定时器线程池提供了定时执行任务的能力,即可以延迟执行,可以周期性执行.但定时器线程池也还是线程池,最底层实现还是ThreadPoolExecutor,可以参考我的另外一篇文章多线程–精通ThreadPoolExecutor. 特点说明 1.构造函数 public ScheduledThreadPoolExecutor(int corePoolSize) { // 对于其他几个参数在ThreadPoolExecutor中都已经详细分析过了,所以这里,将不再展开 // 这里我们可以看到调用基类

  • Java多线程实现FTP批量上传文件

    本文实例为大家分享了Java多线程实现FTP批量上传文件的具体代码,供大家参考,具体内容如下 1.构建FTP客户端 package cn.com.pingtech.common.ftp; import lombok.extern.slf4j.Slf4j; import org.apache.commons.net.ftp.FTPClient; import org.apache.commons.net.ftp.FTPReply; import java.io.*; import java.net

  • java实现多线程文件的断点续传

    java文件的多线程断点续传大致原理,供大家参考,具体内容如下 谈到文件断点续传那么就离不开java.io.RandomAcessFile HttpUrlConnection类 大致思路如下: 1 HttpUrlConnection去请求服务器 获得文件的长度con.getContentLength()2 创建一个空的RandomAcessFile来接收,并且指定刚刚获取的长度setLength3开启N个线程 计算每个线程需要下载的长度4获取之前先去看看下载的进度保存文件是否存在 如果存在就从文

  • Java ThreadPoolExecutor 线程池的使用介绍

    Executors Executors 是一个Java中的工具类. 提供工厂方法来创建不同类型的线程池. 从上图中也可以看出, Executors的创建线程池的方法, 创建出来的线程池都实现了 ExecutorService接口. 常用方法有以下几个: newFixedThreadPool(int Threads): 创建固定数目线程的线程池, 超出的线程会在队列中等待. newCachedThreadPool(): 创建一个可缓存线程池, 如果线程池长度超过处理需要, 可灵活回收空闲线程(60

随机推荐