pytorch 实现在预训练模型的 input上增减通道

如何把imagenet预训练的模型,输入层的通道数随心所欲的修改,从而来适应自己的任务

#增加一个通道
w = layers[0].weight
layers[0] = nn.Conv2d(4, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False)
layers[0].weight = torch.nn.Parameter(torch.cat((w, w[:, :1, :, :]), dim=1))

#方式2
w = layers[0].weight
layers[0] = nn.Conv2d(4, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False)
layers[0].weight = torch.nn.Parameter(torch.cat((w, torch.zeros(64, 1, 7, 7)), dim=1))

#单通道输入
layers[0] = nn.Conv2d(1, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False)
layers[0].weight = torch.nn.Parameter(w[:, :1, :, :])

以上这篇pytorch 实现在预训练模型的 input上增减通道就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • pytorch构建网络模型的4种方法

    利用pytorch来构建网络模型有很多种方法,以下简单列出其中的四种. 假设构建一个网络模型如下: 卷积层-->Relu层-->池化层-->全连接层-->Relu层-->全连接层 首先导入几种方法用到的包: import torch import torch.nn.functional as F from collections import OrderedDict 第一种方法 # Method 1 --------------------------------------

  • pytorch载入预训练模型后,实现训练指定层

    1.有了已经训练好的模型参数,对这个模型的某些层做了改变,如何利用这些训练好的模型参数继续训练: pretrained_params = torch.load('Pretrained_Model') model = The_New_Model(xxx) model.load_state_dict(pretrained_params.state_dict(), strict=False) strict=False 使得预训练模型参数中和新模型对应上的参数会被载入,对应不上或没有的参数被抛弃. 2.

  • 基于pytorch 预训练的词向量用法详解

    如何在pytorch中使用word2vec训练好的词向量 torch.nn.Embedding() 这个方法是在pytorch中将词向量和词对应起来的一个方法. 一般情况下,如果我们直接使用下面的这种: self.embedding = torch.nn.Embedding(num_embeddings=vocab_size, embedding_dim=embeding_dim) num_embeddings=vocab_size 表示词汇量的大小 embedding_dim=embeding

  • Pytorch中实现只导入部分模型参数的方式

    我们在做迁移学习,或者在分割,检测等任务想使用预训练好的模型,同时又有自己修改之后的结构,使得模型文件保存的参数,有一部分是不需要的(don't expected).我们搭建的网络对保存文件来说,有一部分参数也是没有的(missed).如果依旧使用torch.load(model.state_dict())的办法,就会出现 xxx expected,xxx missed类似的错误.那么在这种情况下,该如何导入模型呢? 好在Pytorch中的模型参数使用字典保存的,键是参数的名称,值是参数的具体数

  • Pytorch之保存读取模型实例

    pytorch保存数据 pytorch保存数据的格式为.t7文件或者.pth文件,t7文件是沿用torch7中读取模型权重的方式.而pth文件是python中存储文件的常用格式.而在keras中则是使用.h5文件. # 保存模型示例代码 print('===> Saving models...') state = { 'state': model.state_dict(), 'epoch': epoch # 将epoch一并保存 } if not os.path.isdir('checkpoin

  • pytorch 实现在预训练模型的 input上增减通道

    如何把imagenet预训练的模型,输入层的通道数随心所欲的修改,从而来适应自己的任务 #增加一个通道 w = layers[0].weight layers[0] = nn.Conv2d(4, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False) layers[0].weight = torch.nn.Parameter(torch.cat((w, w[:, :1, :, :]), dim=1)) #方式2 w =

  • PyTorch加载预训练模型实例(pretrained)

    使用预训练模型的代码如下: # 加载预训练模型 resNet50 = models.resnet50(pretrained=True) ResNet50 = ResNet(Bottleneck, [3, 4, 6, 3], num_classes=2) # 读取参数 pretrained_dict = resNet50.state_dict() model_dict = ResNet50.state_dict() # 将pretained_dict里不属于model_dict的键剔除掉 pret

  • pytorch加载预训练模型与自己模型不匹配的解决方案

    pytorch中如果自己搭建网络并且加载别人的与训练模型的话,如果模型和参数不严格匹配,就可能会出问题,接下来记录一下我的解决方法. 两个有序字典找不同 模型的参数和pth文件的参数都是有序字典(OrderedDict),把字典中的键转为列表就可以在for循环里迭代找不同了. model = ResNet18(1) model_dict1 = torch.load('resnet18.pth') model_dict2 = model.state_dict() model_list1 = lis

  • 解决Pytorch修改预训练模型时遇到key不匹配的情况

    一.Pytorch修改预训练模型时遇到key不匹配 最近想着修改网络的预训练模型vgg.pth,但是发现当我加载预训练模型权重到新建的模型并保存之后. 在我使用新赋值的网络模型时出现了key不匹配的问题 #加载后保存(未修改网络) base_weights = torch.load(args.save_folder + args.basenet) ssd_net.vgg.load_state_dict(base_weights) torch.save(ssd_net.state_dict(),

  • Pytorch加载部分预训练模型的参数实例

    前言 自从从深度学习框架caffe转到Pytorch之后,感觉Pytorch的优点妙不可言,各种设计简洁,方便研究网络结构修改,容易上手,比TensorFlow的臃肿好多了.对于深度学习的初学者,Pytorch值得推荐.今天主要主要谈谈Pytorch是如何加载预训练模型的参数以及代码的实现过程. 直接加载预选脸模型 如果我们使用的模型和预训练模型完全一样,那么我们就可以直接加载别人的模型,还有一种情况,我们在训练自己模型的过程中,突然中断了,但只要我们保存了之前的模型的参数也可以使用下面的代码直

  • pytorch 更改预训练模型网络结构的方法

    一个继承nn.module的model它包含一个叫做children()的函数,这个函数可以用来提取出model每一层的网络结构,在此基础上进行修改即可,修改方法如下(去除后两层): resnet_layer = nn.Sequential(*list(model.children())[:-2]) 那么,接下来就可以构建我们的网络了: class Net(nn.Module): def __init__(self , model): super(Net, self).__init__() #取

  • MxNet预训练模型到Pytorch模型的转换方式

    预训练模型在不同深度学习框架中的转换是一种常见的任务.今天刚好DPN预训练模型转换问题,顺手将这个过程记录一下. 核心转换函数如下所示: def convert_from_mxnet(model, checkpoint_prefix, debug=False): _, mxnet_weights, mxnet_aux = mxnet.model.load_checkpoint(checkpoint_prefix, 0) remapped_state = {} for state_key in m

  • pytorch 预训练模型读取修改相关参数的填坑问题

    pytorch 预训练模型读取修改相关参数的填坑 修改部分层,仍然调用之前的模型参数. resnet = resnet50(pretrained=False) resnet.load_state_dict(torch.load(args.predir)) res_conv31 = Bottleneck_dilated(1024, 256,dilated_rate = 2) print("---------------------",res_conv31) print("---

  • 使用pytorch搭建AlexNet操作(微调预训练模型及手动搭建)

    本文介绍了如何在pytorch下搭建AlexNet,使用了两种方法,一种是直接加载预训练模型,并根据自己的需要微调(将最后一层全连接层输出由1000改为10),另一种是手动搭建. 构建模型类的时候需要继承自torch.nn.Module类,要自己重写__ \_\___init__ \_\___方法和正向传递时的forward方法,这里我自己的理解是,搭建网络写在__ \_\___init__ \_\___中,每次正向传递需要计算的部分写在forward中,例如把矩阵压平之类的. 加载预训练ale

随机推荐