Pytorch.nn.conv2d 过程验证方式(单,多通道卷积过程)

今天在看文档的时候,发现pytorch 的conv操作不是很明白,于是有了一下记录

首先提出两个问题:

1.输入图片是单通道情况下的filters是如何操作的? 即一通道卷积核卷积过程

2.输入图片是多通道情况下的filters是如何操作的? 即多通道多个卷积核卷积过程

这里首先贴出官方文档:

classtorch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True)[source]

Parameters:

in_channels (int) – Number of channels in the input image
out_channels (int) – Number of channels produced by the convolution
kernel_size (intortuple) – Size of the convolving kernel
stride (intortuple,optional) – Stride of the convolution. Default: 1
padding (intortuple,optional) – Zero-padding added to both sides of the input. Default: 0
dilation (intortuple,optional) – Spacing between kernel elements. Default: 1
groups (int,optional) – Number of blocked connections from input channels to output channels. Default: 1
bias (bool,optional) – If True, adds a learnable bias to the output. Default: True

这个文档中的公式对我来说,并不能看的清楚

一通道卷积核卷积过程:

比如32个卷积核,可以学习32种特征。在有多个卷积核时,如下图所示:输出就为32个feature map

也就是, 当conv2d( in_channels = 1 , out_channels = N)

有N个filter对输入进行滤波。同时输出N个结果即feature map,每个filter滤波输出一个结果.

import torch
from torch.autograd import Variable
##单位矩阵来模拟输入
input=torch.ones(1,1,5,5)
input=Variable(input)
x=torch.nn.Conv2d(in_channels=1,out_channels=3,kernel_size=3,groups=1)
out=x(input)
print(out)
print(list(x.parameters()))

输出out的结果和conv2d 的参数如下,可以看到,conv2d是有3个filter加一个bias

# out的结果
Variable containing:
(0 ,0 ,.,.) =
 -0.3065 -0.3065 -0.3065
 -0.3065 -0.3065 -0.3065
 -0.3065 -0.3065 -0.3065

(0 ,1 ,.,.) =
 -0.3046 -0.3046 -0.3046
 -0.3046 -0.3046 -0.3046
 -0.3046 -0.3046 -0.3046

(0 ,2 ,.,.) =
 0.0710 0.0710 0.0710
 0.0710 0.0710 0.0710
 0.0710 0.0710 0.0710
[torch.FloatTensor of size 1x3x3x3]

# conv2d的参数
[Parameter containing:
(0 ,0 ,.,.) =
 -0.0789 -0.1932 -0.0990
 0.1571 -0.1784 -0.2334
 0.0311 -0.2595 0.2222

(1 ,0 ,.,.) =
 -0.0703 -0.3159 -0.3295
 0.0723 0.3019 0.2649
 -0.2217 0.0680 -0.0699

(2 ,0 ,.,.) =
 -0.0736 -0.1608 0.1905
 0.2738 0.2758 -0.2776
 -0.0246 -0.1781 -0.0279
[torch.FloatTensor of size 3x1x3x3]
, Parameter containing:
 0.3255
-0.0044
 0.0733
[torch.FloatTensor of size 3]
]

验证如下,因为是单位矩阵,所以直接对参数用sum()来模拟卷积过程:

f_p=list(x.parameters())[0]
f_p=f_p.data.numpy()
print("the result of first channel in image:", f_p[0].sum()+(0.3255))

可以看到结果是和(0 ,0 ,.,.) = -0.3065 ....一样的. 说明操作是通过卷积求和的.

the result of first channel in image: -0.306573044777

多通道卷积核卷积过程:

下图展示了在四个通道上的卷积操作,有两个卷积核,生成两个通道。其中需要注意的是,四个通道上每个通道对应一个卷积核,先将w2忽略,只看w1,那么在w1的某位置(i,j)处的值,是由四个通道上(i,j)处的卷积结果相加得到的。 所以最后得到两个feature map, 即输出层的卷积核核个数为 feature map 的个数。

在pytorch 中的展示为

conv2d( in_channels = X(x>1) , out_channels = N)

有N乘X个filter(N组filters,每组X 个)对输入进行滤波。即每次有一组里X个filter对原X个channels分别进行滤波最后相加输出一个结果,最后输出N个结果即feature map。

验证如下:

##单位矩阵来模拟输入
input=torch.ones(1,3,5,5)
input=Variable(input)
x=torch.nn.Conv2d(in_channels=3,out_channels=4,kernel_size=3,groups=1)
out=x(input)
print(list(x.parameters()))

可以看到共有4*3=12个filter 和一个1×4的bias 作用在这个(3,5,5)的单位矩阵上

## out输出的结果
Variable containing:
(0 ,0 ,.,.) =
 -0.6390 -0.6390 -0.6390
 -0.6390 -0.6390 -0.6390
 -0.6390 -0.6390 -0.6390

(0 ,1 ,.,.) =
 -0.1467 -0.1467 -0.1467
 -0.1467 -0.1467 -0.1467
 -0.1467 -0.1467 -0.1467

(0 ,2 ,.,.) =
 0.4138 0.4138 0.4138
 0.4138 0.4138 0.4138
 0.4138 0.4138 0.4138

(0 ,3 ,.,.) =
 -0.3981 -0.3981 -0.3981
 -0.3981 -0.3981 -0.3981
 -0.3981 -0.3981 -0.3981
[torch.FloatTensor of size 1x4x3x3]

## x的参数设置
[Parameter containing:
(0 ,0 ,.,.) =
 -0.0803 0.1473 -0.0762
 0.0284 -0.0050 -0.0246
 0.1438 0.0955 -0.0500

(0 ,1 ,.,.) =
 0.0716 0.0062 -0.1472
 0.1793 0.0543 -0.1764
 -0.1548 0.1379 0.1143

(0 ,2 ,.,.) =
 -0.1741 -0.1790 -0.0053
 -0.0612 -0.1856 -0.0858
 -0.0553 0.1621 -0.1822

(1 ,0 ,.,.) =
 -0.0773 -0.1385 0.1356
 0.1794 -0.0534 -0.1110
 -0.0137 -0.1744 -0.0188

(1 ,1 ,.,.) =
 -0.0396 0.0149 0.1537
 0.0846 -0.1123 -0.0556
 -0.1047 -0.1783 -0.0630

(1 ,2 ,.,.) =
 0.1850 0.0325 0.0332
 -0.0487 0.0018 0.1668
 0.0569 0.0267 0.0124

(2 ,0 ,.,.) =
 0.1880 -0.0152 -0.1088
 -0.0105 0.1805 -0.0343
 -0.1676 0.1249 0.1872

(2 ,1 ,.,.) =
 0.0299 0.0449 0.1179
 0.1280 -0.1545 0.0593
 -0.1489 0.1378 -0.1495

(2 ,2 ,.,.) =
 -0.0922 0.1873 -0.1163
 0.0970 -0.0682 -0.1110
 0.0614 -0.1877 0.1918

(3 ,0 ,.,.) =
 -0.1257 -0.0814 -0.1923
 0.0048 -0.0789 -0.0048
 0.0780 -0.0290 0.1287

(3 ,1 ,.,.) =
 -0.0649 0.0773 -0.0584
 0.0092 -0.1168 -0.0923
 0.0614 0.1159 0.0134

(3 ,2 ,.,.) =
 0.0426 -0.1055 0.1022
 -0.0810 0.0540 -0.1011
 0.0698 -0.0799 -0.0786
[torch.FloatTensor of size 4x3x3x3]
, Parameter containing:
-0.1367
-0.0410
 0.0424
 0.1353
[torch.FloatTensor of size 4]
]

因为是单位矩阵,所以直接对参数用sum()来模拟卷积过程,结果-0.639065589142 与之前的out结果的(0 ,0 ,.,.) = -0.6390 相同, 即conv2d 是通过利用4组filters,每组filter对每个通道分别卷积相加得到结果。

f_p=list(x.parameters())[0]
f_p=f_p.data.numpy()
print(f_p[0].sum()+(-0.1367))

-0.639065589142

再更新

import torch
from torch.autograd import Variable
input=torch.ones(1,1,5,5)
input=Variable(input)
x=torch.nn.Conv2d(in_channels=1,out_channels=3,kernel_size=3,groups=1)
out=x(input)

f_p=list(x.parameters())[0]
f_p=f_p.data.numpy()
f_b=list(x.parameters())[1]
f_b=f_b.data.numpy()

print("output result is:", out[0][0])
print("the result of first channel in image:", f_p[0].sum()+f_b[0])

output result is: Variable containing:
0.6577 0.6577 0.6577
0.6577 0.6577 0.6577
0.6577 0.6577 0.6577
[torch.FloatTensor of size 3x3]

the result of first channel in image: 0.657724

input=torch.ones(1,3,5,5)
input=Variable(input)
print(input.size())
x=torch.nn.Conv2d(in_channels=3,out_channels=4,kernel_size=3,groups=1)
out=x(input)

f_p=list(x.parameters())[0]
f_b=list(x.parameters())[1]
f_p=f_p.data.numpy()
f_b=f_b.data.numpy()
# print(f_p[...,0])
# print(f_p[...,0].shape)
# print(f_p[...,0].sum()+f_b[0])
print("output result :",out[0][0])
print("simlatuate the result:", f_p[0].sum()+f_b[0])

torch.Size([1, 3, 5, 5])
output result : Variable containing:
-0.2087 -0.2087 -0.2087
-0.2087 -0.2087 -0.2087
-0.2087 -0.2087 -0.2087
[torch.FloatTensor of size 3x3]

simlatuate the result: -0.208715

以上这篇Pytorch.nn.conv2d 过程验证方式(单,多通道卷积过程)就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • pytorch 自定义卷积核进行卷积操作方式

    一 卷积操作:在pytorch搭建起网络时,大家通常都使用已有的框架进行训练,在网络中使用最多就是卷积操作,最熟悉不过的就是 torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True) 通过上面的输入发现想自定义自己的卷积核,比如高斯核,发现是行不通的,因为上面的参数里面只有卷积核尺寸,而权值weight是通过梯度一直更新的,是不确定的.

  • Pytorch实现各种2d卷积示例

    普通卷积 使用nn.Conv2d(),一般还会接上BN和ReLu 参数量NNCin*Cout+Cout(如果有bias,相对来说表示对参数量影响很小,所以后面不考虑) class ConvBNReLU(nn.Module): def __init__(self, C_in, C_out, kernel_size, stride, padding, affine=True): super(ConvBNReLU, self).__init__() self.op = nn.Sequential( n

  • TensorFlow tf.nn.conv2d实现卷积的方式

    实验环境:tensorflow版本1.2.0,python2.7 介绍 惯例先展示函数: tf.nn.conv2d(input, filter, strides, padding, use_cudnn_on_gpu=None, name=None) 除去name参数用以指定该操作的name,与方法有关的一共五个参数: input: 指需要做卷积的输入图像,它要求是一个Tensor,具有[batch, in_height, in_width, in_channels]这样的shape,具体含义是[

  • 在Pytorch中计算卷积方法的区别详解(conv2d的区别)

    在二维矩阵间的运算: class torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True) 对由多个特征平面组成的输入信号进行2D的卷积操作.详解 torch.nn.functional.conv2d(input, weight, bias=None, stride=1, padding=0, dilation=1, groups=1)

  • TensorFlow实现卷积神经网络CNN

    一.卷积神经网络CNN简介 卷积神经网络(ConvolutionalNeuralNetwork,CNN)最初是为解决图像识别等问题设计的,CNN现在的应用已经不限于图像和视频,也可用于时间序列信号,比如音频信号和文本数据等.CNN作为一个深度学习架构被提出的最初诉求是降低对图像数据预处理的要求,避免复杂的特征工程.在卷积神经网络中,第一个卷积层会直接接受图像像素级的输入,每一层卷积(滤波器)都会提取数据中最有效的特征,这种方法可以提取到图像中最基础的特征,而后再进行组合和抽象形成更高阶的特征,因

  • tensorflow实现简单的卷积神经网络

    本文实例为大家分享了Android九宫格图片展示的具体代码,供大家参考,具体内容如下 一.知识点总结 1.  卷积神经网络出现的初衷是降低对图像的预处理,避免建立复杂的特征工程.因为卷积神经网络在训练的过程中,自己会提取特征. 2.   灵感来自于猫的视觉皮层研究,每一个视觉神经元只会处理一小块区域的视觉图像,即感知野.放到卷积神经网络里就是每一个隐含节点只与设定范围内的像素点相连(设定范围就是卷积核的尺寸),而全连接层是每个像素点与每个隐含节点相连.这种感知野也称之为局部感知. 例如,一张10

  • Pytorch.nn.conv2d 过程验证方式(单,多通道卷积过程)

    今天在看文档的时候,发现pytorch 的conv操作不是很明白,于是有了一下记录 首先提出两个问题: 1.输入图片是单通道情况下的filters是如何操作的? 即一通道卷积核卷积过程 2.输入图片是多通道情况下的filters是如何操作的? 即多通道多个卷积核卷积过程 这里首先贴出官方文档: classtorch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1

  • pytorch nn.Conv2d()中的padding以及输出大小方式

    我就废话不多说了,直接上代码吧! conv1=nn.Conv2d(1,2,kernel_size=3,padding=1) conv2=nn.Conv2d(1,2,kernel_size=3) inputs=torch.Tensor([[[[1,2,3], [4,5,6], [7,8,9]]]]) print("input size: ",inputs.shape) outputs1=conv1(inputs) print("output1 size: ",outp

  • 使用 PyTorch 实现 MLP 并在 MNIST 数据集上验证方式

    简介 这是深度学习课程的第一个实验,主要目的就是熟悉 Pytorch 框架.MLP 是多层感知器,我这次实现的是四层感知器,代码和思路参考了网上的很多文章.个人认为,感知器的代码大同小异,尤其是用 Pytorch 实现,除了层数和参数外,代码都很相似. Pytorch 写神经网络的主要步骤主要有以下几步: 1 构建网络结构 2 加载数据集 3 训练神经网络(包括优化器的选择和 Loss 的计算) 4 测试神经网络 下面将从这四个方面介绍 Pytorch 搭建 MLP 的过程. 项目代码地址:la

  • pytorch中的torch.nn.Conv2d()函数图文详解

    目录 一.官方文档介绍 二.torch.nn.Conv2d()函数详解 参数dilation——扩张卷积(也叫空洞卷积) 参数groups——分组卷积 总结 一.官方文档介绍 官网 nn.Conv2d:对由多个输入平面组成的输入信号进行二维卷积 二.torch.nn.Conv2d()函数详解 参数详解 torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1,

  • PyTorch基础之torch.nn.Conv2d中自定义权重问题

    目录 torch.nn.Conv2d中自定义权重 torch.nn.Conv2d()用法讲解 用法 参数 相关形状 总结 torch.nn.Conv2d中自定义权重 torch.nn.Conv2d函数调用后会自动初始化weight和bias,本文主要涉及 如何自定义weight和bias为需要的数均分布类型: torch.nn.Conv2d.weight.data以及torch.nn.Conv2d.bias.data为torch.tensor类型,因此只要对这两个属性进行操作即可. [sampl

  • jquery validate和jquery form 插件组合实现验证表单后AJAX提交

    要实现表单验证和无刷新提交表单我们可以使用jQuery的两个很好用的插件--jquery validate.js 和 jquery form.js.具体详细说明情况下文. 1.jQuery validate.js,它说白了就是一个很高尚的人为我们写好了各种表单的验证,不用我们这些童鞋去现写了,一天天的多累啊,呵呵. 2.jQuery form.js,"这个插件能够让你简洁的将以HTML形式提交的表单升级成采用AJAX技术提交的表单. 插件里面主要的方法, ajaxForm 和 ajaxSubmi

  • Pytorch实现神经网络的分类方式

    本文用于利用Pytorch实现神经网络的分类!!! 1.训练神经网络分类模型 import torch from torch.autograd import Variable import matplotlib.pyplot as plt import torch.nn.functional as F import torch.utils.data as Data torch.manual_seed(1)#设置随机种子,使得每次生成的随机数是确定的 BATCH_SIZE = 5#设置batch

  • 基于pytorch padding=SAME的解决方式

    tensorflow中的conv2有padding='SAME'这个参数.吴恩达讲课中说到当padding=(f-1)/2(f为卷积核大小)时则是SAME策略.但是这个没有考虑到空洞卷积的情况,也没有考虑到strides的情况. 查阅资料后发现网上方法比较麻烦. 手算,实验了一个早上,终于初步解决了问题. 分为两步: 填充多少 中文文档中有计算公式: 输入: 输出: 因为卷积后图片大小同卷积前,所以这里W_out=W_in, H_out=H_in.解一元一次方程即可.结果取ceil. 怎么填充

  • SQL server 2008 更改登录验证方式的方法

    前言:之前在敲学生的时候也遇到过这个问题,但是当时没有能及时总结,导致这次遇到问题还要重新去查,所以今天就做个总结,方便自己也帮助他人! 如果在安装过程中选择"Windows 身份验证模式",则 sa 登录名将被禁用.如果稍后将身份验证模式更改为"SQL Server 和 Windows 身份验证模式",则 sa 登录名仍处于禁用状态.若要启用 sa 登录帐户,请使用 ALTER LOGIN 语句. 安全说明: sa 帐户是一个广为人知的 SQL Server 帐户

随机推荐