python实现CSF地面点滤波算法原理解析

目录
  • 一、算法原理
  • 二、读取las点云
  • 三、算法源码
  • 四、结果展示
  • 五、CloudCompare实现

一、算法原理

布料模拟滤波处理流程:
1)利用点云滤波算法或者点云处理软件滤除异常点;
2)将激光雷达点云倒置;
3)设置模拟布料,设置布料网格分辨率 G R GR GR,确定模拟粒子数。布料的位置设置在点云最高点以上;
4)将布料模拟点和雷达点投影到水平面,为每个布料模拟点找到最相邻的激光点的高度值,将高度值设置为 I H V IHV IHV;
5)布料例子设置为可移动,布料粒子首先受到重力作用,当粒子高度 C H V CHV CHV小于 I H V IHV IHV时,将粒子高度设置为 I H V IHV IHV;粒子设置为不可移动;
6)计算布料粒子之间的内力作用,根据设置的布料刚性参数,调整布料粒子之间的相对位置;
7)重复进行5)和6)计算,迭代次数达到设置的最大迭代次数;
8)计算激光雷达点与对应布料模拟点的距离,距离小于阈值标记为地面点,距离大于阈值标记为非地面点。

点云地面点滤波(Cloth Simulation Filter, CSF)“布料”滤波算法介绍

二、读取las点云

参考链接: python读取las
1、GitHub: laspy
2、基础教程:Laspy: Documentation
3、安装:pip install laspy
4、使用example:

import laspy
#============读取las格式的点云===========
inFile = laspy.file.File(r"40m1.las", mode='r') # 读取点云
print('X,Y,Z',inFile.x,inFile.y,inFile.z) # 输出点云坐标
print('点云个数:',len(inFile)) #读取点云个数
#============保存点云为las文件===========
h = inFile.header
outFile = laspy.file.File('666.las', mode = "w", header=h)
points = inFile #对点云进行的相关操作
outFile.points = points
outFile.close() #关闭文件完成保存

三、算法源码

1、算法细节:CSF
2、源码获取:https://github.com/jianboqi/CSF
3、源码编译:下载源代码。在python文件夹下:
python setup.py build
python setup.py install
4、读取las并可视化算法结果

import laspy
import CSF
import numpy as np
import open3d as o3d
#============读取las文件=============
inFile = laspy.file.File(r"40m1.las", mode='r') # read a las file
points = inFile.points
xyz = np.vstack((inFile.x, inFile.y, inFile.z)).transpose() # extract x, y, z and put into a list
#============布料模拟滤波============
csf = CSF.CSF()
# 参数设置
csf.params.bSloopSmooth = False    #粒子设置为不可移动
csf.params.cloth_resolution = 0.1  #布料网格分辨率
csf.params.rigidness = 3  #布料刚性参数
csf.params.time_step = 0.65
csf.params.class_threshold = 0.03 #点云与布料模拟点的距离阈值
csf.params.interations = 500      #最大迭代次数
# more details about parameter: http://ramm.bnu.edu.cn/projects/CSF/download/
csf.setPointCloud(xyz)
ground = CSF.VecInt()  # 地面点索引列表
non_ground = CSF.VecInt() # 非地面点索引列表
csf.do_filtering(ground, non_ground) # 执行滤波
#============保存为las文件==========
outFile = laspy.file.File(r"non_ground.las",
                          mode='w', header=inFile.header)
outFile.points = points[non_ground] # 提取非地面点保存到las
outFile.close() # 关闭文件夹

a=xyz[ground]
b=xyz[non_ground]
#=============可视化===============
def view_cloud(a, b):
    pcd = o3d.geometry.PointCloud()
    # =====numpy转point=======
    pcd.points = o3d.utility.Vector3dVector(a)

    pcd1 = o3d.geometry.PointCloud()

    pcd1.points = o3d.utility.Vector3dVector(b)
    #=======自定义颜色========
    pcd.paint_uniform_color([0, 1, 0])
    pcd1.paint_uniform_color([1, 0, 0])
    o3d.visualization.draw_geometries([pcd, pcd1],window_name='提取结果')
    o3d.visualization.draw_geometries([pcd1],window_name='非地面点')
    o3d.visualization.draw_geometries([pcd],window_name='地面点')
view_cloud(a,b)

5、读取pcd文件并可视化结果

import open3d as o3d
import CSF
import numpy as np

pc = o3d.io.read_point_cloud("数据//100m1.pcd")
xyz = np.asarray(pc.points)
csf = CSF.CSF()
# prameter settings
csf.params.bSloopSmooth = False
csf.params.cloth_resolution = 0.1
csf.params.rigidness = 3
csf.params.time_step = 0.65
csf.params.class_threshold = 0.03
csf.params.interations = 500
# more details about parameter: http://ramm.bnu.edu.cn/projects/CSF/download/
csf.setPointCloud(xyz)
ground = CSF.VecInt()  # a list to indicate the index of ground points after calculation
non_ground = CSF.VecInt() # a list to indicate the index of non-ground points after calculation
csf.do_filtering(ground, non_ground) # do actual filtering.

# o3d.io.write_point_cloud("trans_of_source.pcd", non_ground)#保存点云
a=xyz[ground]
b=xyz[non_ground]
def view_cloud(a, b):
    pcd = o3d.geometry.PointCloud()
    # From numpy to Open3D
    pcd.points = o3d.utility.Vector3dVector(a)

    pcd1 = o3d.geometry.PointCloud()
    # From numpy to Open3D
    pcd1.points = o3d.utility.Vector3dVector(b)

    pcd.paint_uniform_color([0, 1, 0])
    pcd1.paint_uniform_color([1, 0, 0])
    o3d.visualization.draw_geometries([pcd, pcd1],window_name='提取结果')
    o3d.visualization.draw_geometries([pcd1],window_name='非地面点')
    o3d.visualization.draw_geometries([pcd],window_name='地面点')
view_cloud(a,b)

四、结果展示

五、CloudCompare实现

1、加载点云数据,点击Plugins中的CSF Filter功能

2、弹出如下窗口:



 图中:Cloth resolution:是指用于覆盖地形的布的网格大小(单位与点云的单位相同)。你设置的布分辨率越大,你得到的DTM就越粗糙;Max iterations:是指地形仿真的最大迭代次数。500对大多数场景来说都足够了。Classification threshold:是指根据点与模拟地形之间的距离,将点云划分为地面和非地面部分的阈值。0.5适用于大多数场景
  这里的网格分辨率和距离阈值最小只能设置为10cm,地面10cm的范围默认是地面点,精确度不如自己代码实现中的高。
3、最后得到的结果:

可以看出,非地面点中不能提取到路缘石。

到此这篇关于python实现CSF地面点滤波的文章就介绍到这了,更多相关python地面点滤波内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • 详解利用Python scipy.signal.filtfilt() 实现信号滤波

    本文将以实战的形式基于scipy模块使用Python实现简单滤波处理,包括内容有1.低通滤波,2.高通滤波,3.带通滤波,4.带阻滤波器.具体的含义大家可以查阅大学课程,信号与系统.简单的理解就是低通滤波指的是去除高于某一阈值频率的信号:高通滤波去除低于某一频率的信号:带通滤波指的是类似低通高通的结合保留中间频率信号:带阻滤波也是低通高通的结合只是过滤掉的是中间部分.上面所说的内容会在实战部分加以介绍,可以对比理解一下. 如何实现的呢?我的理解,是通过时域转换为频域,在频域信号中去除相应频域信号

  • 理想高通滤波实现Python opencv示例

    理想高通滤波实现 python opencv import numpy as np import cv2 from matplotlib import pyplot as plt plt.rcParams['font.sans-serif']=['SimHei'] plt.rcParams['axes.unicode_minus'] = False I = cv2.imread('capture3.png') cv2.imshow('original',I) (r,g,b) = cv2.spli

  • Python 基于FIR实现Hilbert滤波器求信号包络详解

    在通信领域,可以通过希尔伯特变换求解解析信号,进而求解窄带信号的包络. 实现希尔伯特变换有两种方法,一种是对信号做FFT,单后只保留单边频谱,在做IFFT,我们称之为频域方法:另一种是基于FIR根据传递函数设计一个希尔伯特滤波器,我们称之为时域方法. # -*- coding:utf8 -*- # @TIME : 2019/4/11 18:30 # @Author : SuHao # @File : hilberfilter.py import scipy.signal as signal im

  • python实现低通滤波器代码

    低通滤波器实验代码,这是参考别人网上的代码,所以自己也分享一下,共同进步 # -*- coding: utf-8 -*- import numpy as np from scipy.signal import butter, lfilter, freqz import matplotlib.pyplot as plt def butter_lowpass(cutoff, fs, order=5): nyq = 0.5 * fs normal_cutoff = cutoff / nyq b, a

  • Python 实现中值滤波、均值滤波的方法

    红包: Lena椒盐噪声图片: # -*- coding: utf-8 -*- """ Created on Sat Oct 14 22:16:47 2017 @author: Don """ from tkinter import * from skimage import io import numpy as np im=io.imread('lena_sp.jpg', as_grey=True) im_copy_med = io.imrea

  • python实现逆滤波与维纳滤波示例

    构建运动模糊模型 现假定相机不动,图像f(x,y)在图像面上移动并且图像f(x,y)除移动外不随时间变化.令x0(t)和y0(t)分别代表位移的x分量和y分量,那么在快门开启的时间T内,胶片上某点的总曝光量是图像在移动过程中一系列相应像素的亮度对该点作用之总和.也就是说,运动模糊图像是由同一图像在产生距离延迟后与原图像想叠加而成.如果快门开启与关闭的时间忽略不计,则有: 由于各种运动都是匀速直线运动的叠加,因而我们只需考虑匀速直线运动即可.但由于我们自身水平有限,且旨在探讨找到实现运动模糊复原方

  • Python实现中值滤波去噪方式

    中值滤波器去噪: 中值滤波的主要原理是将数字图像中的某点用该点的邻域中各个像素值的中值所来代替,这样就能让目标像素周围能够更好的接近真实值,比如一张白纸上有一个黑点时,黑点的像素值比较大,经过中值滤波过后,黑点附近的像素值可能就会变小.经过中值滤波后一些相对孤立的噪声点就容易被清除掉,这样就能提高图像的质量. 所以中值滤波器去噪的一个优点就是对椒盐噪声的去除具有很好的效果,具体操作是选取一个中心邻域,然后给邻域类各个像素的灰度值按大小进行排序,选取排序序列中的中值作为该邻域中心点的像素值的灰度值

  • python实现CSF地面点滤波算法原理解析

    目录 一.算法原理 二.读取las点云 三.算法源码 四.结果展示 五.CloudCompare实现 一.算法原理 布料模拟滤波处理流程: 1)利用点云滤波算法或者点云处理软件滤除异常点: 2)将激光雷达点云倒置: 3)设置模拟布料,设置布料网格分辨率 G R GR GR,确定模拟粒子数.布料的位置设置在点云最高点以上: 4)将布料模拟点和雷达点投影到水平面,为每个布料模拟点找到最相邻的激光点的高度值,将高度值设置为 I H V IHV IHV: 5)布料例子设置为可移动,布料粒子首先受到重力作

  • 使用Python检测文章抄袭及去重算法原理解析

    在互联网出现之前,"抄"很不方便,一是"源"少,而是发布渠道少:而在互联网出现之后,"抄"变得很简单,铺天盖地的"源"源源不断,发布渠道也数不胜数,博客论坛甚至是自建网站,而爬虫还可以让"抄"完全自动化不费劲.这就导致了互联网上的"文章"重复性很高.这里的"文章"只新闻.博客等文字占据绝大部分内容的网页. 中文新闻网站的"转载"(其实就是抄)现象非

  • python 点云地面点滤波-progressive TIN densification(PTD)算法介绍

    本篇博客参考: 1)DEM generation from laser scanner data using adaptive TIN models 2)Filtering airborne LiDAR data by embedding smoothness-constrained segmentation in progressive TIN densification 文章名中有超链接,若不方便下载,则可以在此:资源链接进行下载. 1.引言 1.1什么是地面点滤波? 机载激光雷达(airb

  • python点云地面点滤波(Progressive Morphological Filter)算法介绍(PCL库)

    目录 1. 引言 2. Morphological Filters(形态学滤波) 2.1 膨胀/腐蚀 2.2 形态学滤波 3. Progressive Morphological Filters 3.1 参数计算(窗口尺寸/高程差阈值) 3.1.1 窗口尺寸 3.1.2 高程差阈值 3.2 参数输入/输出 3.2.1 参数输入 3.2.1 参数输出 3.3 PCL官方示例代码 本篇博客参考Keqi Zhang的文章"A Progressive Morphological Filter for R

  • Python深度强化学习之DQN算法原理详解

    目录 1 DQN算法简介 2 DQN算法原理 2.1 经验回放 2.2 目标网络 3 DQN算法伪代码 DQN算法是DeepMind团队提出的一种深度强化学习算法,在许多电动游戏中达到人类玩家甚至超越人类玩家的水准,本文就带领大家了解一下这个算法,论文的链接见下方. 论文:Human-level control through deep reinforcement learning | Nature 代码:后续会将代码上传到Github上... 1 DQN算法简介 Q-learning算法采用一

  • python中的函数递归和迭代原理解析

    这篇文章主要介绍了python中的函数递归和迭代原理解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 一.递归 1.递归的介绍 什么是递归? 程序调用自身的编程技巧称为递归( recursion).递归做为一种算法在程序设计语言中广泛应用. 一个过程或函数在其定义或说明中有直接或间接调用自身的一种方法,它通常把一个大型复杂的问题层层转化为一个与原问题相似的规模较小的问题来求解,递归策略只需少量的程序就可描述出解题过程所需要的多次重复计算,大大

  • python教程网络爬虫及数据可视化原理解析

    目录 1 项目背景 1.1Python的优势 1.2网络爬虫 1.3数据可视化 1.4Python环境介绍 1.4.1简介 1.4.2特点 1.5扩展库介绍 1.5.1安装模块 1.5.2主要模块介绍 2需求分析 2.1 网络爬虫需求 2.2 数据可视化需求 3总体设计 3.1 网页分析 3.2 数据可视化设计 4方案实施 4.1网络爬虫代码 4.2 数据可视化代码 5 效果展示 5.1 网络爬虫 5.1.1 爬取近五年主要城市数据 5.1.2 爬取2019年各省GDP 5.1.3 爬取豆瓣电影

  • Python 中 -m 的典型用法、原理解析与发展演变

    在命令行中使用 Python 时,它可以接收大约 20 个选项(option),语法格式如下: python [-bBdEhiIOqsSuvVWx?] [-c command | -m module-name | script | - ] [args] 本文想要聊聊比较特殊的"-m"选项: 关于它的典型用法.原理解析与发展演变的过程. 首先,让我们用"--help"来看看它的解释: -m mod run library module as a script (ter

  • Python While循环语句实例演示及原理解析

    这篇文章主要介绍了Python While循环语句实例演示及原理解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 Python 编程中 while 语句用于循环执行程序,即在某条件下,循环执行某段程序,以处理需要重复处理的相同任务.其基本形式为: while 判断条件: 执行语句-- 执行语句可以是单个语句或语句块.判断条件可以是任何表达式,任何非零.或非空(null)的值均为true. 当判断条件假false时,循环结束. 执行流程图如下:

  • 使用Redis实现令牌桶算法原理解析

    在限流算法中有一种令牌桶算法,该算法可以应对短暂的突发流量,这对于现实环境中流量不怎么均匀的情况特别有用,不会频繁的触发限流,对调用方比较友好. 例如,当前限制10qps,大多数情况下不会超过此数量,但偶尔会达到30qps,然后很快就会恢复正常,假设这种突发流量不会对系统稳定性产生影响,我们可以在一定程度上允许这种瞬时突发流量,从而为用户带来更好的可用性体验.这就是使用令牌桶算法的地方. 令牌桶算法原理 如下图所示,该算法的基本原理是:有一个容量为X的令牌桶,每Y单位时间内将Z个令牌放入该桶.如

随机推荐