Kafka Java Producer代码实例详解
根据业务需要可以使用Kafka提供的Java Producer API进行产生数据,并将产生的数据发送到Kafka对应Topic的对应分区中,入口类为:Producer
Kafka的Producer API主要提供下列三个方法:
- public void send(KeyedMessage<K,V> message) 发送单条数据到Kafka集群
- public void send(List<KeyedMessage<K,V>> messages) 发送多条数据(数据集)到Kafka集群
- public void close() 关闭Kafka连接资源
一、JavaKafkaProducerPartitioner:自定义的数据分区器,功能是:决定输入的key/value键值对的message发送到Topic的那个分区中,返回分区id,范围:[0,分区数量); 这里的实现比较简单,根据key中的数字决定分区的值。具体代码如下:
import kafka.producer.Partitioner; import kafka.utils.VerifiableProperties; /** * Created by gerry on 12/21. */ public class JavaKafkaProducerPartitioner implements Partitioner { /** * 无参构造函数 */ public JavaKafkaProducerPartitioner() { this(new VerifiableProperties()); } /** * 构造函数,必须给定 * * @param properties 上下文 */ public JavaKafkaProducerPartitioner(VerifiableProperties properties) { // nothings } @Override public int partition(Object key, int numPartitions) { int num = Integer.valueOf(((String) key).replaceAll("key_", "").trim()); return num % numPartitions; } }
二、 JavaKafkaProducer:通过Kafka提供的API进行数据产生操作的测试类;具体代码如下:
import kafka.javaapi.producer.Producer; import kafka.producer.KeyedMessage; import kafka.producer.ProducerConfig; import org.apache.log4j.Logger; import java.util.Properties; import java.util.concurrent.ExecutorService; import java.util.concurrent.Executors; import java.util.concurrent.TimeUnit; import java.util.concurrent.atomic.AtomicBoolean; import java.util.concurrent.ThreadLocalRandom; /** * Created by gerry on 12/21. */ public class JavaKafkaProducer { private Logger logger = Logger.getLogger(JavaKafkaProducer.class); public static final String TOPIC_NAME = "test"; public static final char[] charts = "qazwsxedcrfvtgbyhnujmikolp1234567890".toCharArray(); public static final int chartsLength = charts.length; public static void main(String[] args) { String brokerList = "192.168.187.149:9092"; brokerList = "192.168.187.149:9092,192.168.187.149:9093,192.168.187.149:9094,192.168.187.149:9095"; brokerList = "192.168.187.146:9092"; Properties props = new Properties(); props.put("metadata.broker.list", brokerList); /** * 0表示不等待结果返回<br/> * 1表示等待至少有一个服务器返回数据接收标识<br/> * -1表示必须接收到所有的服务器返回标识,及同步写入<br/> * */ props.put("request.required.acks", "0"); /** * 内部发送数据是异步还是同步 * sync:同步, 默认 * async:异步 */ props.put("producer.type", "async"); /** * 设置序列化的类 * 可选:kafka.serializer.StringEncoder * 默认:kafka.serializer.DefaultEncoder */ props.put("serializer.class", "kafka.serializer.StringEncoder"); /** * 设置分区类 * 根据key进行数据分区 * 默认是:kafka.producer.DefaultPartitioner ==> 安装key的hash进行分区 * 可选:kafka.serializer.ByteArrayPartitioner ==> 转换为字节数组后进行hash分区 */ props.put("partitioner.class", "JavaKafkaProducerPartitioner"); // 重试次数 props.put("message.send.max.retries", "3"); // 异步提交的时候(async),并发提交的记录数 props.put("batch.num.messages", "200"); // 设置缓冲区大小,默认10KB props.put("send.buffer.bytes", "102400"); // 2. 构建Kafka Producer Configuration上下文 ProducerConfig config = new ProducerConfig(props); // 3. 构建Producer对象 final Producer<String, String> producer = new Producer<String, String>(config); // 4. 发送数据到服务器,并发线程发送 final AtomicBoolean flag = new AtomicBoolean(true); int numThreads = 50; ExecutorService pool = Executors.newFixedThreadPool(numThreads); for (int i = 0; i < 5; i++) { pool.submit(new Thread(new Runnable() { @Override public void run() { while (flag.get()) { // 发送数据 KeyedMessage message = generateKeyedMessage(); producer.send(message); System.out.println("发送数据:" + message); // 休眠一下 try { int least = 10; int bound = 100; Thread.sleep(ThreadLocalRandom.current().nextInt(least, bound)); } catch (InterruptedException e) { e.printStackTrace(); } } System.out.println(Thread.currentThread().getName() + " shutdown...."); } }, "Thread-" + i)); } // 5. 等待执行完成 long sleepMillis = 600000; try { Thread.sleep(sleepMillis); } catch (InterruptedException e) { e.printStackTrace(); } flag.set(false); // 6. 关闭资源 pool.shutdown(); try { pool.awaitTermination(6, TimeUnit.SECONDS); } catch (InterruptedException e) { } finally { producer.close(); // 最后之后调用 } } /** * 产生一个消息 * * @return */ private static KeyedMessage<String, String> generateKeyedMessage() { String key = "key_" + ThreadLocalRandom.current().nextInt(10, 99); StringBuilder sb = new StringBuilder(); int num = ThreadLocalRandom.current().nextInt(1, 5); for (int i = 0; i < num; i++) { sb.append(generateStringMessage(ThreadLocalRandom.current().nextInt(3, 20))).append(" "); } String message = sb.toString().trim(); return new KeyedMessage(TOPIC_NAME, key, message); } /** * 产生一个给定长度的字符串 * * @param numItems * @return */ private static String generateStringMessage(int numItems) { StringBuilder sb = new StringBuilder(); for (int i = 0; i < numItems; i++) { sb.append(charts[ThreadLocalRandom.current().nextInt(chartsLength)]); } return sb.toString(); } }
三、Pom.xml依赖配置如下
<properties> <kafka.version>0.8.2.1</kafka.version> </properties> <dependencies> <dependency> <groupId>org.apache.kafka</groupId> <artifactId>kafka_2.10</artifactId> <version>${kafka.version}</version> </dependency> </dependencies>
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。
赞 (0)