python自动化测试之破解图文验证码

对于web应用程序来讲,处于安全性考虑,在登录的时候,都会设置验证码,
验证码的类型种类繁多,有图片中辨别数字字母的,有点击图片中指定的文字的,也有算术计算结果的,再复杂一点就是滑动验证的。
诸如此类的验证码,对我们的系统增加了安全性的保障,但是对于我们测试人员来讲,在自动化测试的过程中,无疑是一个棘手的问题。

1、Web 自动化验证码解决方案

一般在我们测试过程中,登录遇到上述的验证码的时候,有以下种解决方案:

  • 第一种、让开发去掉验证码
  • 第二种、设置一个万能的验证码
  • 第三种、通过 cookie 绕过登录
  • 第四种、自动识别技术识别验证码

2、验证码解决方案

# coding:utf-8
import os
import subprocess
from PIL import Image

def get_captcha(driver, captcha_id, full_screen_img_path, captcha_img_path, captcha_final_path, txt_path, ocr_path):
    # 浏览器界面截图
    driver.save_screenshot(full_screen_img_path)
    # 找到验证码图片,得到它的坐标
    element = driver.find_element_by_id(captcha_id)
    left = element.location['x']
    top = element.location['y']
    right = element.location['x'] + element.size['width']
    bottom = element.location['y'] + element.size['height']
    left, top, right, bottom = int(left), int(top), int(right), int(bottom)
    img = Image.open(full_screen_img_path)
    img = img.crop((left, top, right, bottom))
    # 得到验证码图片
    img.save(captcha_img_path)
    # 打开验证码图片
    img = Image.open(captcha_img_path)
    # 颜色直方图,255种颜色,255为白色
    # 新建一张图片(大小和原图大小相同,背景颜色为255白色)
    img_new = Image.new('P', img.size, 255)
    for x in range(img.size[1]):
        for y in range(img.size[0]):
            # 遍历图片的xy坐标像素点颜色
            pix = img.getpixel((y, x))
            # print(pix)
            # 自己调色,r=0,g=0,b>0为蓝色
            if pix[0] < 20 and pix[1] < 20 and pix[2] > 50:
                # 把遍历的结果放到新图片上,0为透明度,不透明
                img_new.putpixel((y, x), 0)
    img_new.save(captcha_final_path, format='png')

    # 通过tesseract工具解析验证码图片,生成文本
    os.system(ocr_path)

    # 读取txt文件里面的验证码
    with open(txt_path, 'r') as f:
        if f.read():
            t = f.read().strip()
            # 去掉中间空格
            if ' ' in t:
                t = t.replace(' ', '')
            if t.isdigit() and len(t) == 4:
                return t
            else:
                return 'fail'

def check_resp(result, msg):
    if msg in result:
        return 'pass'
    else:
        return 'failed'

# 接口 - 识别验证码
def get_captcha(captcha_img_path, captcha_final_path, txt_path, ocr_path):

    # 打开验证码图片
    img = Image.open(captcha_img_path)

    # 新建一张图片(大小和原图大小相同,背景颜色为255白色)
    img_new = Image.new('P', img.size, 55)
    for x in range(img.size[1]):
        for y in range(img.size[0]):
            # 遍历图片的xy坐标像素点颜色
            pix = img.getpixel((y, x))
            # print(pix)
            # 自己调色,r=0,g=0,b>0为蓝色
            if pix[0] < 20 and pix[1] < 20 and pix[2] > 50:
                # 把遍历的结果放到新图片上,0为透明度,不透明
                img_new.putpixel((y, x), 0)
    img_new.save(captcha_final_path, format='png')

    # 通过tesseract工具解析验证码图片,生成文本,【Tesseract-OCR必须和jpg的根目录必须相同,如C盘、D盘!!!】
    os.system(ocr_path)

    # 读取txt文件里面的验证码
    with open(txt_path, 'r') as f:
        if r.read():
            t = f.read().strip()
            # 去掉中间空格
            if ' ' in t:
                t = t.replace(' ', '')
            # 如果是数字且长度为4,就返回数字,如果不是就返回 fail
            if t.isdigit() and len(t) == 4:
                return t
            else:
                return fail

到此这篇关于python破解图文验证码的文章就介绍到这了。希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • 用Python爬虫破解滑动验证码的案例解析

    做爬虫总会遇到各种各样的反爬限制,反爬的第一道防线往往在登录就出现了,为了限制爬虫自动登录,各家使出了浑身解数,所谓道高一尺魔高一丈. 今天分享个如何简单处理滑动图片的验证码的案例. 类似这种拖动滑块移动到图片中缺口位置与之重合的登录验证在很多网站或者APP都比较常见,因为它对真实用户体验友好,容易识别.同时也能拦截掉大部分初级爬虫. 作为一只python爬虫,如何正确地自动完成这个验证过程呢? 先来分析下,核心问题其实是要怎么样找到目标缺口的位置,一旦知道了位置,我们就可以借用selenium

  • Python+selenium破解拼图验证码的脚本

    目录 实现思路 核心代码 实现思路 很多网站都有拼图验证码 1.首先要了解拼图验证码的生成原理 2.制定破解计划,考虑其可能性和成功率. 3.编写脚本 很多网站的拼图验证码都是直接借助第三方插件,也就是一类一种解法. 笔者遇到的这种拼图验证码实际上是多个小碎片经过重新组合成的一张整体,首先要在网站上抓取这种小碎片图片并下载到本地 我们先捋一捋大体思路: 获取所有碎片图片----找出他们的排列顺序逻辑-----找出他们中含有颜色深的真正位置的那个小碎块的序号-----根据每块碎片的宽度和上下和这个

  • 基于python实现破解滑动验证码过程解析

    前言: 很多小伙伴们反馈,在web自动化的过程中,经常会被登录的验证码给卡住,不知道如何去通过验证码的验证.今天专门给大家来聊聊验证码的问题,一般的情况下遇到验证码我们可以都可以找开发去帮忙解决,关闭验证码,或者给一个万能的验证码!那么如果开发不提供帮助的话,我们自己有没有办法来处理这些验证码的问题呢?答案当然是有的,常见的验证码一般分为两类,一类是图文验证码,一类是滑动验证码! 今天我们主要来聊聊滑动验证码如何去识别破解. 滑动验证破解思路 关于滑动验证码破解的思路大体上来讲就是以下两个步骤:

  • Python实现破解12306图片验证码的方法分析

    本文实例讲述了Python实现破解12306图片验证码的方法.分享给大家供大家参考,具体如下: 不知从何时起,12306的登录验证码竟然变成了按字找图,可以说是又提高了一个等次,竟然把图像识别都用上了.不过有些图片,不得不说有些变态,图片的清晰图就更别说了,明显是从网络上的图库中搬过来的. 谁知没多久,网络就惊现破解12306图片验证码的Python代码了,作为一个爱玩爱刺激的网虫,当然要分享一份过来. 代码大致流程: 1.将验证码图片下载下来,然后切图: 2.利用百度识图进行图片分析: 3.再

  • Python破解极验滑动验证码详细步骤

    极验滑动验证码 以上图片是最典型的要属于极验滑动认证了,极验官网:http://www.geetest.com/. 现在极验验证码已经更新到了 3.0 版本,截至 2017 年 7 月全球已有十六万家企业正在使用极验,每天服务响应超过四亿次,广泛应用于直播视频.金融服务.电子商务.游戏娱乐.政府企业等各大类型网站 对于这类验证,如果我们直接模拟表单请求,繁琐的认证参数与认证流程会让你蛋碎一地,我们可以用selenium驱动浏览器来解决这个问题,大致分为以下几个步骤 1.输入用户名,密码 2.点击

  • python滑块验证码的破解实现

    破解滑块验证码的思路主要有2种: 获得一张完整的背景图和一张有缺口的图片,两张图片进行像素上的一一对比,找出不一样的坐标. 获得一张有缺口的图片和需要验证的小图,两张图片进行二极化以及归一化,确定小图在图片中间的坐标. 之后就要使用初中物理知识了,使用直线加速度模仿人手动操作 本次就使用第2种,第一种比较简单.废话不多说,直接上代码: 以下均利用无头浏览器进行获取 获得滑块验证的小图片 def get_image1(self,driver): """ 获取滑块验证缺口小图片

  • Python模拟登录之滑块验证码的破解(实例代码)

    模拟登录之滑块验证码的破解,具体代码如下所示: # 图像处理标准库 from PIL import Image # web测试 from selenium import webdriver # 鼠标操作 from selenium.webdriver.common.action_chains import ActionChains # 等待时间 产生随机数 import time, random # 滑块移动轨迹 def get_tracks1(distance): # 初速度 v = 0 #

  • python自动化测试之破解图文验证码

    对于web应用程序来讲,处于安全性考虑,在登录的时候,都会设置验证码,验证码的类型种类繁多,有图片中辨别数字字母的,有点击图片中指定的文字的,也有算术计算结果的,再复杂一点就是滑动验证的.诸如此类的验证码,对我们的系统增加了安全性的保障,但是对于我们测试人员来讲,在自动化测试的过程中,无疑是一个棘手的问题. 1.Web 自动化验证码解决方案 一般在我们测试过程中,登录遇到上述的验证码的时候,有以下种解决方案: 第一种.让开发去掉验证码 第二种.设置一个万能的验证码 第三种.通过 cookie 绕

  • python自动化测试之破解滑动验证码

    在Web自动化测试的过程中,经常会被登录的验证码给卡住,不知道如何去通过验证码的验证.一般的情况下遇到验证码我们可以都可以找开发去帮忙解决,关闭验证码,或者给一个万能的验证码!那么如果开发不提供帮助的话,我们自己有没有办法来处理这些验证码的问题呢?答案当然是有的,常见的验证码一般分为两类,一类是图文验证码,一类是滑动验证码! 滑动验证破解思路 关于滑动验证码破解的思路大体上来讲就是以下两个步骤: 1.获取滑块滑动的距离 2.模拟拖动滑块,通过验证. 关于这种滑动的验证码,滑块和缺口背景都是分别是

  • python自动化测试之从命令行运行测试用例with verbosity

    本文实例讲述了python自动化测试之从命令行运行测试用例with verbosity,分享给大家供大家参考.具体如下: 实例文件recipe3.py如下: class RomanNumeralConverter(object): def __init__(self, roman_numeral): self.roman_numeral = roman_numeral self.digit_map = {"M":1000, "D":500, "C"

  • python自动化测试之连接几组测试包实例

    本文实例讲述了python自动化测试之连接几组测试包的方法,分享给大家供大家参考.具体方法如下: 具体代码如下: class RomanNumeralConverter(object): def __init__(self): self.digit_map = {"M":1000, "D":500, "C":100, "L":50, "X":10, "V":5, "I"

  • python自动化测试之setUp与tearDown实例

    本文实例讲述了python自动化测试之setUp与tearDown的用法,分享给大家供大家参考.具体如下: 实例代码如下: class RomanNumeralConverter(object): def __init__(self): self.digit_map = {"M":1000, "D":500, "C":100, "L":50, "X":10, "V":5, "I

  • python自动化测试之DDT数据驱动的实现代码

    时隔已久,再次冒烟,自动化测试工作仍在继续,自动化测试中的数据驱动技术尤为重要,不然咋去实现数据分离呢,对吧,这里就简单介绍下与传统unittest自动化测试框架匹配的DDT数据驱动技术. 话不多说,先撸一波源码,其实整体代码并不多 # -*- coding: utf-8 -*- # This file is a part of DDT (https://github.com/txels/ddt) # Copyright 2012-2015 Carles Barrobés and DDT con

  • python自动化测试之异常及日志操作实例分析

    本文实例讲述了python自动化测试之异常及日志操作.分享给大家供大家参考,具体如下: 为了保持自动化测试用例的健壮性,异常的捕获及处理,日志的记录对掌握自动化测试执行情况尤为重要,这里便详细的介绍下在自动化测试中使用到的异常及日志,并介绍其详细的用法. 一.日志 打印日志是很多程序的重要需求,良好的日志输出可以帮我们更方便的检测程序运行状态.Python标准库提供了logging模块,切记Logger从来不直接实例化,其好处不言而喻,接下来慢慢讲解Logging模块提供了两种记录日志的方式.

  • python自动化操作之动态验证码、滑动验证码的降噪和识别

    目录 前言 一.动态验证码 二.滑动验证码 三.验证码的降噪 四.验证码的识别 总结 前言 python对动态验证码.滑动验证码的降噪和识别,在各种自动化操作中,我们经常要遇到沿跳过验证码的操作,而对于验证码的降噪和识别,的确困然了很多的人.这里我们就详细讲解一下不同验证码的降噪和识别. 一.动态验证码 动态验证码是服务端生成的,点击一次,就会更换一次,这就会造成很多人在识别的时候,会发现验证码一直过期 这是因为,如果你是把图片下载下来,进行识别的话,其实在下载的这个请求中,其实相当于点击了一次

  • Python自动化测试之异常处理机制实例详解

    目录 一.前言 二.异常处理合集 2.1 异常处理讲解 2.2 异常捕获 2.3 异常捕获原理 2.4 特定异常捕获 2.5 异常捕获的处理 2.6 except.Exception与BaseException 2.7 finally用法 2.8 异常信息的打印输出 三.总结 一.前言 今天笔者还是想要讲python中的基础,主要讲解Python中异常介绍.捕获.处理相关知识点内容,只有学好了这些才能为后续自动化测试框架搭建及日常维护做铺垫,废话不多说我们直接进入主题吧. 二.异常处理合集 2.

  • Python自动化测试之登录脚本的实现

    目录 环境准备 1.安装selenium模块 2.安装浏览器驱动器 代码 1.登录代码 2.xpath定位元素标签 环境准备 前提已经安装好python.pycharm,配置了对应的环境变量. 1.安装selenium模块 文件–>设置—>项目:script---->python解释器---->+selenium 2.安装浏览器驱动器 以谷歌浏览器为例下载地址:https://chromedriver.chromium.org/downloads(1)先查看谷歌浏览器版本:(2)下

随机推荐