golang 熔断器的实现过程

目录
  • 1.熔断器的模式
  • 2.gobreaker 的实现
    • 2.1熔断器的定义
    • 2.2请求的执行
    • 2.3请求之前的判定操作
    • 2.4请求之后的处理操作

熔断器像是一个保险丝。当我们依赖的服务出现问题时,可以及时容错。一方面可以减少依赖服务对自身访问的依赖,防止出现雪崩效应;另一方面降低请求频率以方便上游尽快恢复服务。

熔断器的应用也非常广泛。除了在我们应用中,为了请求服务时使用熔断器外,在 web 网关、微服务中,也有非常广泛的应用。本文将从源码角度学习 sony 开源的一个熔断器实现

github/sony/gobreaker (代码注释可以从github/lpflpf/gobreaker查看)

1.熔断器的模式

gobreaker 是基于《微软云设计模式》一书中的熔断器模式的 Golang 实现。有 sony 公司开源,目前 star 数有 1.2K。使用人数较多。

下面是模式定义的一个状态机:

熔断器有三种状态,四种状态转移的情况:

  • 熔断器关闭状态,服务正常访问
  • 熔断器开启状态,服务异常
  • 熔断器半开状态,部分请求限流访问

四种状态转移:

  • 在熔断器关闭状态下,当失败后并满足一定条件后,将直接转移为熔断器开启状态。
  • 在熔断器开启状态下,如果过了规定的时间,将进入半开启状态,验证目前服务是否可用。
  • 在熔断器半开启状态下,如果出现失败,则再次进入关闭状态。
  • 在熔断器半开启后,所有请求(有限额)都是成功的,则熔断器关闭。所有请求将正常访问。

2.gobreaker 的实现

gobreaker 是在上述状态机的基础上,实现的一个熔断器。

2.1熔断器的定义

type CircuitBreaker struct {  
  name          string  
  maxRequests   uint32  // 最大请求数 (半开启状态会限流)  
  interval      time.Duration   // 统计周期  
  timeout       time.Duration   // 进入熔断后的超时时间  
  readyToTrip   func(counts Counts) bool // 通过 Counts 判断是否开启熔断。需要自定义  
  onStateChange func(name string, from State, to State) // 状态修改时的钩子函数  

  mutex      sync.Mutex // 互斥锁,下面数据的更新都需要加锁  
  state      State  // 记录了当前的状态  
  generation uint64 // 标记属于哪个周期  
  counts     Counts // 计数器,统计了 成功、失败、连续成功、连续失败等,用于决策是否进入熔断  
  expiry     time.Time // 进入下个周期的时间  
}  

其中,如下参数是我们可以自定义的:

  • MaxRequests:最大请求数。当在最大请求数下,均请求正常的情况下,会关闭熔断器
  • interval:一个正常的统计周期。如果为 0,那每次都会将计数清零
  • timeout: 进入熔断后,可以再次请求的时间
  • readyToTrip:判断熔断生效的钩子函数
  • onStateChagne:状态变更的钩子函数

2.2请求的执行

熔断器的执行操作,主要包括三个阶段;①请求之前的判定;②服务的请求执行;③请求后的状态和计数的更新

// 熔断器的调用  
func (cb *CircuitBreaker) Execute(req func() (interface{}, error)) (interface{}, error) {  

  // ①请求之前的判断  
  generation, err := cb.beforeRequest()  
  if err != nil {  
    return nil, err  
  }  

  defer func() {  
    e := recover()  
    if e != nil {  
      // ③ panic 的捕获  
      cb.afterRequest(generation, false)  
      panic(e)  
    }  
  }()  

  // ② 请求和执行  
  result, err := req()  

  // ③ 更新计数  
  cb.afterRequest(generation, err == nil)  
  return result, err  
}  

2.3请求之前的判定操作

请求之前,会判断当前熔断器的状态。如果熔断器以开启,则不会继续请求。如果熔断器半开,并且已达到最大请求阈值,也不会继续请求。

func (cb *CircuitBreaker) beforeRequest() (uint64, error) {  
  cb.mutex.Lock()  
  defer cb.mutex.Unlock()  

  now := time.Now()  
  state, generation := cb.currentState(now)  

  if state == StateOpen { // 熔断器开启,直接返回  
    return generation, ErrOpenState  
  } else if state == StateHalfOpen && cb.counts.Requests >= cb.maxRequests { // 如果是半打开的状态,并且请求次数过多了,则直接返回  
    return generation, ErrTooManyRequests  
  }  

  cb.counts.onRequest()  
  return generation, nil  
}  

其中当前状态的计算,是依据当前状态来的。如果当前状态为已开启,则判断是否已经超时,超时就可以变更状态到半开;如果当前状态为关闭状态,则通过周期判断是否进入下一个周期。

func (cb *CircuitBreaker) currentState(now time.Time) (State, uint64) {  
  switch cb.state {  
  case StateClosed:  
    if !cb.expiry.IsZero() && cb.expiry.Before(now) { // 是否需要进入下一个计数周期  
      cb.toNewGeneration(now)  
    }  
  case StateOpen:  
    if cb.expiry.Before(now) {  
      // 熔断器由开启变更为半开  
      cb.setState(StateHalfOpen, now)  
    }  
  }  
  return cb.state, cb.generation  
}  

周期长度的设定,也是以据当前状态来的。如果当前正常(熔断器关闭),则设置为一个 interval 的周期;如果当前熔断器是开启状态,则设置为超时时间(超时后,才能变更为半开状态)。

2.4请求之后的处理操作

每次请求之后,会通过请求结果是否成功,对熔断器做计数。

func (cb *CircuitBreaker) afterRequest(before uint64, success bool) {  
  cb.mutex.Lock()  
  defer cb.mutex.Unlock()  

  now := time.Now()  

  // 如果不在一个周期,就不再计数  
  state, generation := cb.currentState(now)  
  if generation != before {  
    return  
  }  

  if success {  
    cb.onSuccess(state, now)  
  } else {  
    cb.onFailure(state, now)  
  }  
}  

如果在半开的状态下:

如果请求成功,则会判断当前连续成功的请求数 大于等于 maxRequests, 则可以把状态由半开状态转移为关闭状态
如果在半开状态下,请求失败,则会直接将半开状态转移为开启状态
如果在关闭状态下:

如果请求成功,则计数更新
如果请求失败,则调用 readyToTrip 判断是否需要将状态关闭状态转移为开启状态

总结:

  • 于频繁请求一些远程或者第三方的不可靠的服务,存在失败的概率还是非常大的。使用熔断器的好处就是可以是我们自身的服务不被这些不可靠的服务拖垮,造成雪崩。
  • 由于熔断器里面,不仅会维护不少的统计数据,还有互斥锁做资源隔离,成本也会不少。
  • 在半开状态下,可能出现请求过多的情况。这是由于半开状态下,连续请求成功的数量未达到最大请求值。所以,熔断器对于请求时间过长(但是比较频繁)的服务可能会造成大量的 too many requests 错误

到此这篇关于golang 熔断器的实现过程的文章就介绍到这了,更多相关golang 熔断器的实现内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • golang 熔断器的实现过程

    目录 1.熔断器的模式 2.gobreaker 的实现 2.1熔断器的定义 2.2请求的执行 2.3请求之前的判定操作 2.4请求之后的处理操作 熔断器像是一个保险丝.当我们依赖的服务出现问题时,可以及时容错.一方面可以减少依赖服务对自身访问的依赖,防止出现雪崩效应:另一方面降低请求频率以方便上游尽快恢复服务. 熔断器的应用也非常广泛.除了在我们应用中,为了请求服务时使用熔断器外,在 web 网关.微服务中,也有非常广泛的应用.本文将从源码角度学习 sony 开源的一个熔断器实现 github/

  • golang 熔断器的实现过程

    目录 1.熔断器的模式 2.gobreaker 的实现 2.1熔断器的定义 2.2请求的执行 2.3请求之前的判定操作 2.4请求之后的处理操作 熔断器像是一个保险丝.当我们依赖的服务出现问题时,可以及时容错.一方面可以减少依赖服务对自身访问的依赖,防止出现雪崩效应:另一方面降低请求频率以方便上游尽快恢复服务. 熔断器的应用也非常广泛.除了在我们应用中,为了请求服务时使用熔断器外,在 web 网关.微服务中,也有非常广泛的应用.本文将从源码角度学习 sony 开源的一个熔断器实现 github/

  • golang环形队列实现代码示例

    Summary 什么是环形队列 实现环形队列图示过程 golang版本代码实现过程 参考全部代码 什么是环形队列 在一个指定大小的数组里循环写入数据,借用二个指针分别实现入队标记与出队标记.也体现了指针的大好用处,请深入体会.大有裨益. 如图所示,一个环形队列.含有二个指针: 队列头指针,队列尾指针. 实现环形队列图示过程 初始化一个数组大小为6的环形队列, 头指针front=0, 尾指针rear=0, 刚好front=rear =0的状态,表示环形队列为空. 2.向环形队列里插入1个元素,则r

  • Golang官方限流器库实现限流示例详解

    目录 前言 例子 实现 小结 前言 在翻Golang官方库的过程中,发现一个有趣的库golang.org/x/time ,里面只有一个类rate,研究了一下发现它是一个限流器,实现了很多的功能,当然它的核心原理并不复杂,也就是令牌桶算法. 令牌桶算法的原理是:令牌桶会不断地把令牌添加到桶里,而请求会从桶中获取令牌,只有拥有令牌地请求才能被接受.因为桶中可以提前保留一些令牌,所以它允许一定地突发流量通过. 例子 下面是限流算法常见的写法,首先判断是否有令牌,如果有就通过,否则直接失败. packa

  • Golang实现AES对称加密的过程详解

    AES加密 AES对称加密简介 AES是一个对称密码,旨在取代DES成为广泛使用的标准.是美国联邦政府采用的一种区块加密标准. AES对称加密过程 加密解密算法的输入是一个128位分组.这些分组被描述成4×4的字节方阵,这个分组被复制到数组中,并在加密和解密的每一阶段都被修改.在字节方阵中,每一格都是一个字,包含了4字节.在矩阵中字是按列排序的. 加密由N轮构成,轮数依赖于密钥长度:16字节密钥对应10轮,24字节密钥对应12轮,32字节对应14轮. AES加密模式 1.电码本模式(Electr

  • Golang开发Go依赖管理工具dep安装验证实现过程

    目录 Go依赖管理工具 环境要求 目前版本 安装 验证 初始化 默认初始化 优先从$GOPATH初始化 Gopkg.toml Gopkg.lock 常用命令 dep ensure dep ensure -add dep ensure -update Go依赖管理工具 Go dependency management tool 环境要求 Golang >= 1.9Dep 目前版本 dep: version : devel build date : git hash : go version : g

  • golang连接redis库及基本操作示例过程

    目录 Redis介绍 Redis支持的数据结构 Redis应用场景 准备Redis环境 go-redis库 安装 连接 V8新版本相关 连接Redis哨兵模式 连接Redis集群 基本使用 HVals set/get示例 zset示例 根据前缀获取Key 执行自定义命令 按通配符删除key Pipeline 事务 Watch Redis介绍 Redis是一个开源的内存数据库,Redis提供了多种不同类型的数据结构,很多业务场景下的问题都可以很自然地映射到这些数据结构上.除此之外,通过复制.持久化

  • 在 Golang 中实现一个简单的Http中间件过程详解

    本文主要针对Golang的内置库 net/http 做了简单的扩展,通过添加中间件的形式实现了管道(Pipeline)模式,这样的好处是各模块之间是低耦合的,符合单一职责原则,可以很灵活的通过中间件的形式添加一些功能到管道中,一次请求和响应在管道中的执行过程如下 首先, 我定义了三个测试的中间件 Middleware1,2,3 如下 func Middleware1(next http.Handler) http.Handler { return http.HandlerFunc(func(w

  • golang beego框架环境搭建过程

    目录 环境搭建 1.开启gomod设置代理 2.安装beego和bee 3.升级bee 4.zsh: command not found: bee 5.bee相关命令 6.项目启动 7.beego项目结构分析 环境搭建 下载安装beego,bee 1.开启gomod设置代理 go env -w GO111MODULE=on go env -w GOPROXY=https://goproxy.cn 2.安装beego和bee go get -u -v github.com/astaxie/beeg

  • golang实现简单rpc调用过程解析

    目录 基本概念 RPC通信过程 RPC 具体实现 server端 客户端 基本概念 RPC(Remote Procedure Call)远程过程调用,简单的理解是一个节点请求另一个节点提供的服务,该协议允许运行于一台计算机的程序调用另一台计算机的子程序,而程序员无需额外地为这个交互作用编程,RPC最直接的作用就是微服务. RPC通信过程 RPC的通信过程网上介绍很多,这里就不在单独介绍了,具体过程如下:1.Client以本地调用的方式发起调用:2.Client stub收到调用后负责将被调用的方

随机推荐