Python深度学习之Pytorch初步使用

一、Tensor

Tensor(张量是一个统称,其中包括很多类型):

0阶张量:标量、常数、0-D Tensor;1阶张量:向量、1-D Tensor;2阶张量:矩阵、2-D Tensor;……

二、Pytorch如何创建张量

2.1 创建张量

import torch

	t = torch.Tensor([1, 2, 3])
	print(t)

2.2 tensor与ndarray的关系

两者之间可以相互转化

import torch
import numpy as np

t1 = np.array(torch.Tensor([[1, 2, 3],
        [1, 2, 3]]))
t2 = torch.Tensor(np.array([[1, 2, 3],
        [1, 2, 3]]))

运行结果:

2.3 常用api

torch.empty(x,y)

创建x行y列为空的tensor。

torch.ones([x, y])

创建x行y列全为1的tensor。

torch.zeros([x,y])

创建x行y列全为0的temsor。

zeros与empty的区别

后者的数据类型是不固定的。

torch.rand(x, y)

创建3行4列的随机数,随机数是0-1。

torch.randint(low, high, size)

创建一个size的tensor,随机数为low到high之间。

torch.randn([x, y])

创建一个x行y列的tensor,随机数的分布式均值为0,方差1。

2.4 常用方法

item()

获取tensor中的元素,注意只有一个元素的时候才可以用。

numpy()

转化成ndarray类型。

size()

获取tensor的形状

view()

浅拷贝,tensor的形状改变

可以传参,表示获取第几个。若参数为-1,表示不确定,与另一个参数的乘积等于原始形状的乘积。 例如:原始形状为8,则view(-1,2)view(4, 2); 参数只有-1,表示一维。

dim()

获取维度。

max()

获取最大值。

t()

转置。

transpose(x,y)

x,y是size里面返回的形状相换。

permute()

传入size()返回的形状的顺序。

transpose与permute的区别

前者传入列即可相互交换;后者传入列会根据传入的顺序来进行转化,且需要传入所有列数的索引。

取值[第一阶, 第二阶,……]

一个逗号隔开代表一个阶乘冒号代表全取

赋值[第一阶, 第二阶,……]

直接赋值即可

三、数据类型

3.1 获取数据类型

tensor.dtype

获取数据类型

设置数据类型

注意使用Tensor()不能指定数据类型。

type()

修改数据类型。

四、tensor的其他操作

4.1 相加

torch.add(x, y)

将x和y相加

直接相加

tensor.add()

使用add_() 可相加后直接保存在tensor中

4.2 tensor与数字的操作

tensor + 数值

五、CUDA中的tensor

CUDA (Compute Unified Device Architecture),是NVIDIA推出的运算平台。CUDATM是一种由NVIDIA推出的通用并行计算架构,该架构使GPU能够解决复杂的计算问题。
torch.cuda这个模块增加了对CUDA tensor的支持,能够在cpu和gpu上使用相同的方法操作tensor通过.to方法能够把一个tensor转移到另外一个设备(比如从CPU转到GPU)

可以使用torch.cuda.is_available()判断电脑是否支持GPU

到此这篇关于Python深度学习之Pytorch初步使用的文章就介绍到这了,更多相关Pytorch初步使用内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • pytorch 带batch的tensor类型图像显示操作

    项目场景 pytorch训练时我们一般把数据集放到数据加载器里,然后分批拿出来训练.训练前我们一般还要看一下训练数据长啥样,也就是训练数据集可视化. 那么如何显示dataloader里面带batch的tensor类型的图像呢? 显示图像 绘图最常用的库就是matplotlib: pip install matplotlib 显示图像会用到matplotlib.pyplot.imshow方法.查阅官方文档可知,该方法接收的图像的通道数要放到后面: 数据加载器中数据的维度是[B, C, H, W],

  • 简述python&pytorch 随机种子的实现

    随机数广泛应用在科学研究, 但是计算机无法产生真正的随机数, 一般成为伪随机数. 它的产生过程: 给定一个随机种子(一个正整数), 根据随机算法和种子产生随机序列. 给定相同的随机种子, 计算机产生的随机数列是一样的(这也许是伪随机的原因). 随机种子是什么? 随机种子是针对随机方法而言的. 随机方法:常见的随机方法有 生成随机数,以及其他的像 随机排序 之类的,后者本质上也是基于生成随机数来实现的.在深度学习中,比较常用的随机方法的应用有:网络的随机初始化,训练集的随机打乱等. 随机种子的取值

  • 基于python及pytorch中乘法的使用详解

    numpy中的乘法 A = np.array([[1, 2, 3], [2, 3, 4]]) B = np.array([[1, 0, 1], [2, 1, -1]]) C = np.array([[1, 0], [0, 1], [-1, 0]]) A * B : # 对应位置相乘 np.array([[ 1, 0, 3], [ 4, 3, -4]]) A.dot(B) : # 矩阵乘法 ValueError: shapes (2,3) and (2,3) not aligned: 3 (dim

  • Pytorch使用shuffle打乱数据的操作

    这个东西算是我被这个shuffle坑了的一个总结吧! 首先我得告诉你一件事,那就是pytorch中的tensor,如果直接使用random.shuffle打乱数据,或者使用下面的方式,自己定义直接写. def Shuffle(self, x, y,random=None, int=int): if random is None: random = self.random for i in range(len(x)): j = int(random() * (i + 1)) if j<=len(x

  • python PyTorch参数初始化和Finetune

    前言 这篇文章算是论坛PyTorch Forums关于参数初始化和finetune的总结,也是我在写代码中用的算是"最佳实践"吧.最后希望大家没事多逛逛论坛,有很多高质量的回答. 参数初始化 参数的初始化其实就是对参数赋值.而我们需要学习的参数其实都是Variable,它其实是对Tensor的封装,同时提供了data,grad等借口,这就意味着我们可以直接对这些参数进行操作赋值了.这就是PyTorch简洁高效所在. 所以我们可以进行如下操作进行初始化,当然其实有其他的方法,但是这种方法

  • 浅谈pytorch、cuda、python的版本对齐问题

    在使用深度学习模型训练的过程中,工具的准备也算是一个良好的开端吧.熟话说完事开头难,磨刀不误砍柴工,先把前期的问题搞通了,能为后期节省不少精力. 以pytorch工具为例: pytorch版本为1.0.1,自带python版本为3.6.2 服务器上GPU的CUDA_VERSION=9000 注意:由于GPU上的CUDA_VERSION为9000,所以至少要安装cuda版本>=9.0,虽然cuda=7.0~8.0也能跑,但是一开始可能会遇到各种各样的问题,本人cuda版本为10.0,安装cuda的

  • 我对PyTorch dataloader里的shuffle=True的理解

    对shuffle=True的理解: 之前不了解shuffle的实际效果,假设有数据a,b,c,d,不知道batch_size=2后打乱,具体是如下哪一种情况: 1.先按顺序取batch,对batch内打乱,即先取a,b,a,b进行打乱: 2.先打乱,再取batch. 证明是第二种 shuffle (bool, optional): set to ``True`` to have the data reshuffled at every epoch (default: ``False``). if

  • Python深度学习之使用Pytorch搭建ShuffleNetv2

    一.model.py 1.1 Channel Shuffle def channel_shuffle(x: Tensor, groups: int) -> Tensor: batch_size, num_channels, height, width = x.size() channels_per_group = num_channels // groups # reshape # [batch_size, num_channels, height, width] -> [batch_size

  • python PyTorch预训练示例

    前言 最近使用PyTorch感觉妙不可言,有种当初使用Keras的快感,而且速度还不慢.各种设计直接简洁,方便研究,比tensorflow的臃肿好多了.今天让我们来谈谈PyTorch的预训练,主要是自己写代码的经验以及论坛PyTorch Forums上的一些回答的总结整理. 直接加载预训练模型 如果我们使用的模型和原模型完全一样,那么我们可以直接加载别人训练好的模型: my_resnet = MyResNet(*args, **kwargs) my_resnet.load_state_dict(

  • python、PyTorch图像读取与numpy转换实例

    Tensor转为numpy np.array(Tensor) numpy转换为Tensor torch.Tensor(numpy.darray) PIL.Image.Image转换成numpy np.array(PIL.Image.Image) numpy 转换成PIL.Image.Image Image.fromarray(numpy.ndarray) 首先需要保证numpy.ndarray 转换成np.uint8型 numpy.astype(np.uint8),像素值[0,255]. 同时灰

  • python 如何查看pytorch版本

    看代码吧~ import torch print(torch.__version__) 补充:pytorch不同版本安装以及版本查看 一:基于conda安装 conda create --name pytorch_learn python=3.6.7#创建一个名为pytorch_learn的环境 source activate pytorch_learn #进入环境 conda install pytorch=0.3.1 cuda80 -c soumith #安装pytorch0.3.1+ cu

随机推荐