基于python cut和qcut的用法及区别详解

我就废话不多说了,直接上代码吧:

from pandas import Series,DataFrame
import pandas as pd
import numpy as np
from numpy import nan as NA
from matplotlib import pyplot as plt
ages = [20,22,25,27,21,23,37,31,61,45,41,32]
#将所有的ages进行分组
bins = [18,25,35,60,100]
#使用pandas中的cut对年龄数据进行分组
cats = pd.cut(ages,bins)
#print(cats)
#调用pd.value_counts方法统计每个区间的个数
number=pd.value_counts(cats)
#print(pd.value_counts(cats))
#显示第几个区间index值
index=pd.cut(ages,bins).codes
#print(index)
#为分类出来的每一组年龄加上标签
group_names = ["Youth","YouthAdult","MiddleAged","Senior"]
personType=pd.cut(ages,bins,labels=group_names)
#print(personType)
plt.hist(personType)
#plt.show()
#cut和qcut的用法
data=[1,2,3,4,5,6,7,8,9,10]
result=pd.qcut(data,4)
print(' ',result)##qcut会将10个数据进行排序,然后再将data数据均分成四组
#统计落在每个区间的元素个数
print('dasdasdasdasdas:  ',pd.value_counts(result))
#qcut : 跟cut一样也可以自定义分位数(0到1之间的数值,包括端点)
results=pd.qcut(data,[0,0.1,0.5,0.9,1])
print('results:  ',results)
import numpy as np
import pandas as pd
data = np.random.rand(20)
print(data)
#用cut函数将一组数据分割成n份
#cut函数分割的方式:数据里的(最大值-最小值)/n=每个区间的间距
#利用数据中最大值和最小值的差除以分组数作为每一组数据的区间范围的差值
result = pd.cut(data,4,precision=2) #precision保留小数点的有效位数
print(result)
res_data=pd.value_counts(result)
print(res_data)

以上这篇基于python cut和qcut的用法及区别详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • pandas.cut具体使用总结

    用途 pandas.cut用来把一组数据分割成离散的区间.比如有一组年龄数据,可以使用pandas.cut将年龄数据分割成不同的年龄段并打上标签. 原型 pandas.cut(x, bins, right=True, labels=None, retbins=False, precision=3, include_lowest=False, duplicates='raise') #0.23.4 参数含义 x:被切分的类数组(array-like)数据,必须是1维的(不能用DataFrame):

  • pandas的qcut()方法详解

    pandas的qcut可以把一组数字按大小区间进行分区,比如 data = pd.Series([0,8,1,5,3,7,2,6,10,4,9]) 比如我要把这组数据分成两部分,一半大的,一半小的,如果是小的数,值就变成'small number',大的数,值就变成'large number': print(pd.qcut(data,[0,0.5,1],labels=['small number','large number'])) small numbers large numbers sma

  • 基于python cut和qcut的用法及区别详解

    我就废话不多说了,直接上代码吧: from pandas import Series,DataFrame import pandas as pd import numpy as np from numpy import nan as NA from matplotlib import pyplot as plt ages = [20,22,25,27,21,23,37,31,61,45,41,32] #将所有的ages进行分组 bins = [18,25,35,60,100] #使用pandas

  • 基于Python Numpy的数组array和矩阵matrix详解

    NumPy的主要对象是同种元素的多维数组.这是一个所有的元素都是一种类型.通过一个正整数元组索引的元素表格(通常是元素是数字). 在NumPy中维度(dimensions)叫做轴(axes),轴的个数叫做秩(rank,但是和线性代数中的秩不是一样的,在用python求线代中的秩中,我们用numpy包中的linalg.matrix_rank方法计算矩阵的秩,例子如下). 结果是: 线性代数中秩的定义:设在矩阵A中有一个不等于0的r阶子式D,且所有r+1阶子式(如果存在的话)全等于0,那末D称为矩阵

  • 基于python 二维数组及画图的实例详解

    1.二维数组取值 注:不管是二维数组,还是一维数组,数组里的数据类型要一模一样,即若是数值型,全为数值型 #二维数组 import numpy as np list1=[[1.73,1.68,1.71,1.89,1.78], [54.4,59.2,63.6,88.4,68.7]] list3=[1.73,1.68,1.71,1.89,1.78] list4=[54.4,59.2,63.6,88.4,68.7] list5=np.array([1.73,1.68,1.71,1.89,1.78])

  • 基于python批量处理dat文件及科学计算方法详解

    摘要:主要介绍一些python的文件读取功能,文件内容修改,文件名后缀更改等操作. 批处理文件功能 import os path1 = 'C:\\Users\\awake_ljw\\Documents\\python for data analysis\\test1' path2 = 'C:\\Users\\awake_ljw\\Documents\\python for data analysis\\test2' filelist = os.listdir(path1) for files i

  • 基于Python中isfile函数和isdir函数使用详解

    Python编程语言判断是否是目录 在Python编程语言中可以使用os.path.isdir()函数判断某一路径是否为目录.其函数原型如下所示. os.path.isdir(path) 参数含义如下. path:要进行判断的路径.以下实例判断E:\MJlife\test是否为目录. >>>import os >>>os.path.isdir('E:\\MJlife\\test') 判断是否为目录的输出结果 True 表示H:\MJlife\test是目录. Pytho

  • 基于Python实现配置热加载的方法详解

    目录 背景 如何实现 使用多进程实现配置热加载 使用signal信号量来实现热加载 采用multiprocessing.Event 来实现配置热加载 结语 背景 由于最近工作需求,需要在已有项目添加一个新功能,实现配置热加载的功能.所谓的配置热加载,也就是说当服务收到配置更新消息之后,我们不用重启服务就可以使用最新的配置去执行任务. 如何实现 下面我分别采用多进程.多线程.协程的方式去实现配置热加载. 使用多进程实现配置热加载 如果我们代码实现上使用多进程, 主进程1来更新配置并发送指令,任务的

  • Python探索之静态方法和类方法的区别详解

    面相对象程序设计中,类方法和静态方法是经常用到的两个术语. 逻辑上讲:类方法是只能由类名调用:静态方法可以由类名或对象名进行调用. python staticmethod and classmethod Though classmethod and staticmethod are quite similar, there's a slight difference in usage for both entities: classmethod must have a reference to

  • vue.js的computed,filter,get,set的用法及区别详解

    1.vue.js的computed方法: 处理复杂逻辑,基于依赖缓存,当依赖发生改变时会重新取值.用methods也可以实现同样的效果,但methods在重新渲染的时候会重新调用执行,在性能上computed优于methods,当不需要缓存时可用methods. 实例1:computed和methods实现翻转字符串 <template> <div> <input v-model="message"> <p>原始字符串: {{ messa

  • MySQL的视图和索引用法与区别详解

    MySQL的视图 简单来说MySQL的视图就是对SELECT 命令的定义的一个快捷键,我们查询时会用到非常复杂的SELECT语句,而这个语句我们以后还会经常用到,我们可以经这个语句生产视图.视图是一个虚拟的表,它不存储数据,所用的数据都在真实的表中. 这样做的好处有: 1.防止有未经允许的租户访问到敏感数据 2.将多个物理表抽象成一个逻辑表 3.结果容易理解 4.获得数据更容易,很多人对SQL语句不太了解,我们可以通过创建视图的形式方便用户使用. 5.显示数据更容易. 6.维护程序更方便.调试视

  • 基于DOM节点删除之empty和remove的区别(详解)

    要移除页面上节点是开发者常见的操作,jQuery提供了几种不同的方法用来处理这个问题,这里我们开仔细了解下empty和remove方法 empty 顾名思义,清空方法,但是与删除又有点不一样,因为它只移除了 指定元素中的所有子节点. 这个方法不仅移除子元素(和其他后代元素),同样移除元素里的文本.因为,根据说明,元素里任何文本字符串都被看做是该元素的子节点.请看下面的HTML: <div class="hello"><p>这是p标签</p></

随机推荐