Python函数式编程指南:对生成器全面讲解

生成器是迭代器,同时也并不仅仅是迭代器,不过迭代器之外的用途实在是不多,所以我们可以大声地说:生成器提供了非常方便的自定义迭代器的途径。

这是函数式编程指南的最后一篇,似乎拖了一个星期才写好,嗯……

1. 生成器(generator)

1.1. 生成器简介

首先请确信,生成器就是一种迭代器。生成器拥有next方法并且行为与迭代器完全相同,这意味着生成器也可以用于Python的for循环中。另外,对于生成器的特殊语法支持使得编写一个生成器比自定义一个常规的迭代器要简单不少,所以生成器也是最常用到的特性之一。

从Python 2.5开始,[PEP 342:通过增强生成器实现协同程序]的实现为生成器加入了更多的特性,这意味着生成器还可以完成更多的工作。这部分我们会在稍后的部分介绍。

1.2. 生成器函数

1.2.1. 使用生成器函数定义生成器

如何获取一个生成器?首先来看一小段代码:

>>> def get_0_1_2():
... yield 0
... yield 1
... yield 2
...
>>> get_0_1_2
<function get_0_1_2 at 0x00B2CB70>

我们定义了一个函数get_0_1_2,并且可以查看到这确实是函数类型。但与一般的函数不同的是,get_0_1_2的函数体内使用了关键字yield,这使得get_0_1_2成为了一个生成器函数。生成器函数的特性如下:

调用生成器函数将返回一个生成器;

>>> generator = get_0_1_2()
>>> generator
<generator object get_0_1_2 at 0x00B1C7D8>

第一次调用生成器的next方法时,生成器才开始执行生成器函数(而不是构建生成器时),直到遇到yield时暂停执行(挂起),并且yield的参数将作为此次next方法的返回值;

>>> generator.next()
0

之后每次调用生成器的next方法,生成器将从上次暂停执行的位置恢复执行生成器函数,直到再次遇到yield时暂停,并且同样的,yield的参数将作为next方法的返回值;

>>> generator.next()
1
>>> generator.next()
2

如果当调用next方法时生成器函数结束(遇到空的return语句或是到达函数体末尾),则这次next方法的调用将抛出StopIteration异常(即for循环的终止条件);

>>> generator.next()
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
StopIteration

生成器函数在每次暂停执行时,函数体内的所有变量都将被封存(freeze)在生成器中,并将在恢复执行时还原,并且类似于闭包,即使是同一个生成器函数返回的生成器,封存的变量也是互相独立的。

我们的小例子中并没有用到变量,所以这里另外定义一个生成器来展示这个特点:

>>> def fibonacci():
... a = b = 1
... yield a
... yield b
... while True:
... a, b = b, a+b
... yield b
...
>>> for num in fibonacci():
... if num > 100: break
... print num,
...
1 1 2 3 5 8 13 21 34 55 89

看到while True可别太吃惊,因为生成器可以挂起,所以是延迟计算的,无限循环并没有关系。这个例子中我们定义了一个生成器用于获取斐波那契数列。

1.2.2. 生成器函数的FAQ

接下来我们来讨论一些关于生成器的有意思的话题。

你的例子里生成器函数都没有参数,那么生成器函数可以带参数吗?

当然可以啊亲,而且它支持函数的所有参数形式。要知道生成器函数也是函数的一种:)

>>> def counter(start=0):
... while True:
... yield start
... start += 1
...

这是一个从指定数开始的计数器。

既然生成器函数也是函数,那么它可以使用return输出返回值吗?

不行的亲,是这样的,生成器函数已经有默认的返回值——生成器了,你不能再另外给一个返回值;对,即使是return None也不行。但是它可以使用空的return语句结束。如果你坚持要为它指定返回值,那么Python将在定义的位置赠送一个语法错误异常,就像这样:

>>> def i_wanna_return():
... yield None
... return None
...
 File "<stdin>", line 3
SyntaxError: 'return' with argument inside generator

好吧,那人家需要确保释放资源,需要在try...finally中yield,这会是神马情况?(我就是想玩你)我在finally中还yield了一次!

Python会在真正离开try...finally时再执行finally中的代码,而这里遗憾地告诉你,暂停不算哦!所以结局你也能猜到吧!

>>> def play_u():
... try:
... yield 1
... yield 2
... yield 3
... finally:
... yield 0
...
>>> for val in play_u(): print val,
...
1 2 3 0

*这与return的情况不同。return是真正的离开代码块,所以会在return时立刻执行finally子句。

*另外,“在带有finally子句的try块中yield”定义在PEP 342中,这意味着只有Python 2.5以上版本才支持这个语法,在Python 2.4以下版本中会得到语法错误异常。

如果我需要在生成器的迭代过程中接入另一个生成器的迭代怎么办?写成下面这样好傻好天真。。

>>> def sub_generator():
... yield 1
... yield 2
... for val in counter(10): yield val
...

这种情况的语法改进已经被定义在[PEP 380:委托至子生成器的语法]中,据说会在Python 3.3中实现,届时也可能回馈到2.x中。实现后,就可以这么写了:

>>> def sub_generator():
... yield 1
... yield 2
... yield from counter(10)
 File "<stdin>", line 4
 yield from counter(10)
  ^
SyntaxError: invalid syntax

看到语法错误木有?现在我们还是天真一点吧~

有更多问题?请回复此文:)

1.3. 协同程序(coroutine)

协同程序(协程)一般来说是指这样的函数:

彼此间有不同的局部变量、指令指针,但仍共享全局变量;

可以方便地挂起、恢复,并且有多个入口点和出口点;

多个协同程序间表现为协作运行,如A的运行过程中需要B的结果才能继续执行。

协程的特点决定了同一时刻只能有一个协同程序正在运行(忽略多线程的情况)。得益于此,协程间可以直接传递对象而不需要考虑资源锁、或是直接唤醒其他协程而不需要主动休眠,就像是内置了锁的线程。在符合协程特点的应用场景,使用协程无疑比使用线程要更方便。

从另一方面说,协程无法并发其实也将它的应用场景限制在了一个很狭窄的范围,这个特点使得协程更多的被拿来与常规函数进行比较,而不是与线程。当然,线程比协程复杂许多,功能也更强大,所以我建议大家牢牢地掌握线程即可:Python线程指南分享

这一节里我也就不列举关于协程的例子了,以下介绍的方法了解即可。

Python 2.5对生成器的增强实现了协程的其他特点,在这个版本中,生成器加入了如下方法:

send(value):

send是除next外另一个恢复生成器的方法。Python 2.5中,yield语句变成了yield表达式,这意味着yield现在可以有一个值,而这个值就是在生成器的send方法被调用从而恢复执行时,调用send方法的参数。

>>> def repeater():
... n = 0
... while True:
... n = (yield n)
...
>>> r = repeater()
>>> r.next()
0
>>> r.send(10)
10

*调用send传入非None值前,生成器必须处于挂起状态,否则将抛出异常。不过,未启动的生成器仍可以使用None作为参数调用send。

*如果使用next恢复生成器,yield表达式的值将是None。

close():

这个方法用于关闭生成器。对关闭的生成器后再次调用next或send将抛出StopIteration异常。

throw(type, value=None, traceback=None):

这个方法用于在生成器内部(生成器的当前挂起处,或未启动时在定义处)抛出一个异常。

*别为没见到协程的例子遗憾,协程最常见的用处其实就是生成器。

1.4. 一个有趣的库:pipe

这一节里我要向诸位简要介绍pipe。pipe并不是Python内置的库,如果你安装了easy_install,直接可以安装它,否则你需要自己下载它:http://pypi.python.org/pypi/pipe

之所以要介绍这个库,是因为它向我们展示了一种很有新意的使用迭代器和生成器的方式:流。pipe将可迭代的数据看成是流,类似于linux,pipe使用'|'传递数据流,并且定义了一系列的“流处理”函数用于接受并处理数据流,并最终再次输出数据流或者是将数据流归纳得到一个结果。我们来看一些例子。

第一个,非常简单的,使用add求和:

>>> from pipe import *
>>> range(5) | add
10

求偶数和需要使用到where,作用类似于内建函数filter,过滤出符合条件的元素:

>>> range(5) | where(lambda x: x % 2 == 0) | add
6

还记得我们定义的斐波那契数列生成器吗?求出数列中所有小于10000的偶数和需要用到take_while,与itertools的同名函数有类似的功能,截取元素直到条件不成立:

>>> fib = fibonacci
>>> fib() | where(lambda x: x % 2 == 0)\
... | take_while(lambda x: x < 10000)\
... | add
3382

需要对元素应用某个函数可以使用select,作用类似于内建函数map;需要得到一个列表,可以使用as_list:

>>> fib() | select(lambda x: x ** 2) | take_while(lambda x: x < 100) | as_list
[1, 1, 4, 9, 25, 64]

pipe中还包括了更多的流处理函数。你甚至可以自己定义流处理函数,只需要定义一个生成器函数并加上修饰器Pipe。如下定义了一个获取元素直到索引不符合条件的流处理函数:

>>> @Pipe
... def take_while_idx(iterable, predicate):
... for idx, x in enumerate(iterable):
... if predicate(idx): yield x
... else: return
...

使用这个流处理函数获取fib的前10个数字:

>>> fib() | take_while_idx(lambda x: x < 10) | as_list
[1, 1, 2, 3, 5, 8, 13, 21, 34, 55]

更多的函数就不在这里介绍了,你可以查看pipe的源文件,总共600行不到的文件其中有300行是文档,文档中包含了大量的示例。

pipe实现起来非常简单,使用Pipe装饰器,将普通的生成器函数(或者返回迭代器的函数)代理在一个实现了__ror__方法的普通类实例上即可,但是这种思路真的很有趣。

函数式编程指南全文到这里就全部结束了,希望这一系列文章能给你带来帮助。希望大家都能看到一些结构式编程之外的编程方式,并且能够熟练地在恰当的地方使用 :)

明天我会整理一个目录放上来方便查看,并且列出一些供参考的文章。遗憾的是这些文章几乎都是英文的,请努力学习英语吧 - -#

这篇Python函数式编程指南:对生成器全面讲解就是小编分享给大家的全部内容了,给大家一个参考,希望大家多多支持我们。

(0)

相关推荐

  • Python迭代器iterator生成器generator使用解析

    1. 迭代 根据记录的前面的元素的位置信息 去访问后续的元素的过程 -遍历 迭代 2. 可迭代对象 iterable 如何判断可迭代对象的3种方式 能够被迭代访问的对象 for in 常用可迭代对象-list tuple str from collections import Iterable isinstance(obj, Iterable) 3. 可迭代对象 可迭代对象通过__iter__方法提供一个 可以遍历对象中数据的工具-迭代器 iter(可迭代对象) 可以获取可迭代对象的迭代器 通过

  • 基于python2.7实现图形密码生成器的实例代码

    具体代码如下所示: #coding:utf8 import random,wx def password(event): a = [chr(i) for i in range(97,123)] b = [chr(i) for i in range(65,91)] c = ['0','1','2','3','4','5','6','7','8','9'] d = ['!','@','#','$','%','^','&','*','(',')','=','_','+','/','?'] set1 =

  • python 协程中的迭代器,生成器原理及应用实例详解

    本文实例讲述了python 协程中的迭代器,生成器原理及应用.分享给大家供大家参考,具体如下: 1.迭代器理解 迭代器: 迭代器是访问可迭代对象的工具 迭代器是指用iter(obj)函数返回的对象(实例) 迭代器是指用next(it)函数获取可迭代对象的数据 迭代器函数(iter和next) iter(iterable)从可迭代对象中返回一个迭代器,iterable必须是能提供一个迭代器的对象 next(iterator) 从迭代器iterator中获取下一了记录,如果无法获取下一条记录,则触发

  • python3.6生成器yield用法实例分析

    本文实例讲述了python3.6生成器yield用法.分享给大家供大家参考,具体如下: 今天看源码的时候看到了一个比较有意思的函数:yield 功能与return类似,都是返回定义的函数的一个结果,不同的是return返回后这次调用函数就结束了,除了返回值,其余临时变量都会被清除.而yield会停止在当前步,并保留其余变量的值,等下次调用该函数时,从yield的下一步继续往下运行. yield的好处是如果函数需要很大的内存,比方说需要计算并返回一个很大的数列,如果用return,我们只能用一个l

  • Python 生成器,迭代,yield关键字,send()传参给yield语句操作示例

    本文实例讲述了Python 生成器,迭代,yield关键字,send()传参给yield语句操作.分享给大家供大家参考,具体如下: demo.py(生成器,yield关键字): # 生成器是一个特殊的迭代器.可以用for...in遍历. # 带有yield关键字的函数,不再是一个函数,而是一个生成器模板.调用该模板会返回一个生成器对象. def create_num(all_num): a, b = 0, 1 current_num = 0 while current_num < all_num

  • python生成器/yield协程/gevent写简单的图片下载器功能示例

    本文实例讲述了python生成器/yield协程/gevent写简单的图片下载器功能.分享给大家供大家参考,具体如下: 1.生成器: '''第二种生成器''' # 函数只有有yield存在就是生成器 def test(i): while True: i += 1 res = yield i print(res) i += 1 return res def main(): t = test(1) # 创建生成器对象 print(next(t)) # next第一次执行从上到下,yield是终点 p

  • python生成器推导式用法简单示例

    本文实例讲述了python生成器推导式用法.分享给大家供大家参考,具体如下: 1.生成器推导式是继列表推导式后的有一中python推导式,他比列表推导式速度更快,占用的内存也更少. 2.使用生成器对象时,可以根据需要将他转化为列表或者元组,也可以是哟个生成器对像__next__()方法或内置函数next()进行遍历,其具有惰性求值的特点,进行一次遍历后便不能再次方位内部元素,即访问一次立马清空生成器对象 >>> g = ((i+2)**2 for i in range(10)) >

  • Python函数式编程指南:对生成器全面讲解

    生成器是迭代器,同时也并不仅仅是迭代器,不过迭代器之外的用途实在是不多,所以我们可以大声地说:生成器提供了非常方便的自定义迭代器的途径. 这是函数式编程指南的最后一篇,似乎拖了一个星期才写好,嗯-- 1. 生成器(generator) 1.1. 生成器简介 首先请确信,生成器就是一种迭代器.生成器拥有next方法并且行为与迭代器完全相同,这意味着生成器也可以用于Python的for循环中.另外,对于生成器的特殊语法支持使得编写一个生成器比自定义一个常规的迭代器要简单不少,所以生成器也是最常用到的

  • Python函数式编程指南(四):生成器详解

    4. 生成器(generator) 4.1. 生成器简介 首先请确信,生成器就是一种迭代器.生成器拥有next方法并且行为与迭代器完全相同,这意味着生成器也可以用于Python的for循环中.另外,对于生成器的特殊语法支持使得编写一个生成器比自定义一个常规的迭代器要简单不少,所以生成器也是最常用到的特性之一. 从Python 2.5开始,[PEP 342:通过增强生成器实现协同程序]的实现为生成器加入了更多的特性,这意味着生成器还可以完成更多的工作.这部分我们会在稍后的部分介绍. 4.2. 生成

  • Python函数式编程指南(二):从函数开始

    2. 从函数开始 2.1. 定义一个函数 如下定义了一个求和函数: 复制代码 代码如下: def add(x, y):     return x + y 关于参数和返回值的语法细节可以参考其他文档,这里就略过了. 使用lambda可以定义简单的单行匿名函数.lambda的语法是: 复制代码 代码如下: lambda args: expression 参数(args)的语法与普通函数一样,同时表达式(expression)的值就是匿名函数调用的返回值:而lambda表达式返回这个匿名函数.如果我们

  • Python函数式编程指南(一):函数式编程概述

    1. 函数式编程概述 1.1. 什么是函数式编程? 函数式编程使用一系列的函数解决问题.函数仅接受输入并产生输出,不包含任何能影响产生输出的内部状态.任何情况下,使用相同的参数调用函数始终能产生同样的结果. 在一个函数式的程序中,输入的数据"流过"一系列的函数,每一个函数根据它的输入产生输出.函数式风格避免编写有"边界效应"(side effects)的函数:修改内部状态,或者是其他无法反应在输出上的变化.完全没有边界效应的函数被称为"纯函数式的"

  • Python函数式编程指南(三):迭代器详解

    3. 迭代器 3.1. 迭代器(Iterator)概述 迭代器是访问集合内元素的一种方式.迭代器对象从集合的第一个元素开始访问,直到所有的元素都被访问一遍后结束. 迭代器不能回退,只能往前进行迭代.这并不是什么很大的缺点,因为人们几乎不需要在迭代途中进行回退操作. 迭代器也不是线程安全的,在多线程环境中对可变集合使用迭代器是一个危险的操作.但如果小心谨慎,或者干脆贯彻函数式思想坚持使用不可变的集合,那这也不是什么大问题. 对于原生支持随机访问的数据结构(如tuple.list),迭代器和经典fo

  • 详解Python函数式编程—高阶函数

    函数式编程就是一种抽象程度很高的编程范式,纯粹的函数式编程语言编写的函数没有变量,因此,任意一个函数,只要输入是确定的,输出就是确定的,这种纯函数我们称之为没有副作用.而允许使用变量的程序设计语言,由于函数内部的变量状态不确定,同样的输入,可能得到不同的输出,因此,这种函数是有副作用的. 函数式编程的一个特点就是,允许把函数本身作为参数传入另一个函数,还允许返回一个函数! Python对函数式编程提供部分支持.由于Python允许使用变量,因此,Python不是纯函数式编程语言. 高阶函数 变量

  • Python函数式编程实例详解

    本文实例讲述了Python函数式编程.分享给大家供大家参考,具体如下: 函数式编程就是一种抽象程度很高的编程范式,从计算机硬件->汇编语言->C语言->Python抽象程度越高.越贴近于计算,但执行效率也越低.纯粹的函数式编程语言编写的函数没有变量,因此,任意一个函数,只要输入是确定的,输出就是确定的,这种纯函数我们称之为没有副作用.而允许使用变量的程序设计语言,由于函数内部的变量状态不确定,同样的输入,可能得到不同的输出,因此,这种函数是有副作用的.函数式编程的一个特点就是,允许把函数

  • 浅谈Python 函数式编程

    匿名函数lambda表达式 什么是匿名函数? 匿名函数,顾名思义就是没有名字的函数,在程序中不用使用 def 进行定义,可以直接使用 lambda 关键字编写简单的代码逻辑.lambda 本质上是一个函数对象,可以将其赋值给另一个变量,再由该变量来调用函数,也可以直接使用. #平时,我们是先定义函数,再进行调用 def power(x): return x ** 2 print(power(2)) #使用lambda表达式的时候,我们可以这样操作 power = lambda x : x **

  • 简析Python函数式编程字符串和元组及函数分类与高阶函数

    目录 函数式编程中的字符串 不变类型元组 普通元组的声明与访问 函数式的分类 any() .all() .len().sum() 对比学习 zip().reversed().enumerate() 高阶函数 函数 max 和 min() map 函数 filter 函数 sorted 函数 同一需求的不同效率问题 函数式编程中的字符串 在函数式编程中,经常用到 Python 字符串,因其是不可变数据结构. 字符串本身是一个对象,具备很多对象方法,与常识中函数的使用不太相同,例如下述代码 my_s

  • Python函数式编程之面向过程面向对象及函数式简析

    目录 Python 函数式编程 同一案例的不同写法,展示函数式编程 面向过程的写法 面向对象的写法 接下来进入正题,函数式编程的落地实现 Python 函数式编程的特点 纯函数 Python 函数式编程 Python 不是纯粹的函数式语言,但你可以使用 Python 进行函数式编程 典型的听君一席话,如听一席话,说白了就是 Python 具备函数式编程的特性, so,可以借用函数式语言的设计模式和编程技术,把代码写成函数式编程的样子 一般此时我会吹嘘一下,函数式代码比较简洁和优雅~ 好了,已经吹

随机推荐