python matplotlib imshow热图坐标替换/映射实例

今天遇到了这样一个问题,使用matplotlib绘制热图数组中横纵坐标自然是图片的像素排列顺序,

但是这样带来的问题就是画出来的x,y轴中坐标点的数据任然是x,y在数组中的下标,

实际中我们可能期望坐标点是其他的一个范围,如图:

坐标点标出来的是实际数组中的下标,而我希望纵坐标是频率,横坐标是其他的范围

plt.yticks(np.arange(0, 1024, 100), np.arange(10000, 11024, 100))
#第一个参数表示原来的坐标范围,100是每隔100个点标出一次
#第二个参数表示将展示的坐标范围替换为新的范围,同样每隔100个点标出一次
plt.xticks(np.arange(0, 2000, 500), np.arange(0, 50000, 500))
#同理将x轴的表示范围由(0,2000)扩展到(0,50000)每隔500个点标出一次

完成!

补充知识:matplotlib plt.scatter()中cmap用法

我就废话不多说了,还是直接看代码吧!

import numpy as np
import matplotlib.pyplot as plt

# Have colormaps separated into categories:
# http://matplotlib.org/examples/color/colormaps_reference.html
cmaps = [('Perceptually Uniform Sequential', [
      'viridis', 'plasma', 'inferno', 'magma']),
     ('Sequential', [
      'Greys', 'Purples', 'Blues', 'Greens', 'Oranges', 'Reds',
      'YlOrBr', 'YlOrRd', 'OrRd', 'PuRd', 'RdPu', 'BuPu',
      'GnBu', 'PuBu', 'YlGnBu', 'PuBuGn', 'BuGn', 'YlGn']),
     ('Sequential (2)', [
      'binary', 'gist_yarg', 'gist_gray', 'gray', 'bone', 'pink',
      'spring', 'summer', 'autumn', 'winter', 'cool', 'Wistia',
      'hot', 'afmhot', 'gist_heat', 'copper']),
     ('Diverging', [
      'PiYG', 'PRGn', 'BrBG', 'PuOr', 'RdGy', 'RdBu',
      'RdYlBu', 'RdYlGn', 'Spectral', 'coolwarm', 'bwr', 'seismic']),
     ('Qualitative', [
      'Pastel1', 'Pastel2', 'Paired', 'Accent',
      'Dark2', 'Set1', 'Set2', 'Set3',
      'tab10', 'tab20', 'tab20b', 'tab20c']),
     ('Miscellaneous', [
      'flag', 'prism', 'ocean', 'gist_earth', 'terrain', 'gist_stern',
      'gnuplot', 'gnuplot2', 'CMRmap', 'cubehelix', 'brg', 'hsv',
      'gist_rainbow', 'rainbow', 'jet', 'nipy_spectral', 'gist_ncar'])]

nrows = max(len(cmap_list) for cmap_category, cmap_list in cmaps)
gradient = np.linspace(0, 1, 256)
gradient = np.vstack((gradient, gradient))

def plot_color_gradients(cmap_category, cmap_list, nrows):
  fig, axes = plt.subplots(nrows=nrows)
  fig.subplots_adjust(top=0.95, bottom=0.01, left=0.2, right=0.99)
  axes[0].set_title(cmap_category + ' colormaps', fontsize=14)

  for ax, name in zip(axes, cmap_list):
    ax.imshow(gradient, aspect='auto', cmap=plt.get_cmap(name))
    pos = list(ax.get_position().bounds)
    x_text = pos[0] - 0.01
    y_text = pos[1] + pos[3]/2.
    fig.text(x_text, y_text, name, va='center', ha='right', fontsize=10)

  # Turn off *all* ticks & spines, not just the ones with colormaps.
  for ax in axes:
    ax.set_axis_off()

for cmap_category, cmap_list in cmaps:
  plot_color_gradients(cmap_category, cmap_list, nrows)

#十分类散点图绘制
randlabel = np.random.randint(0,1,10)
randdata = np.reshape(np.random.rand(10*2),(10,2))

cm = plt.cm.get_cmap('RdYlBu')
z = randlabel
sc = plt.scatter(randdata[:,0], randdata[:,1], c=z, vmin=0, vmax=10, s=35,edgecolors='k', cmap=cm)
plt.colorbar(sc)
plt.show()

以上这篇python matplotlib imshow热图坐标替换/映射实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • python matplotlib坐标轴设置的方法

    在使用matplotlib模块时画坐标图时,往往需要对坐标轴设置很多参数,这些参数包括横纵坐标轴范围.坐标轴刻度大小.坐标轴名称等 在matplotlib中包含了很多函数,用来对这些参数进行设置. 我们可以对坐标轴进行设置,设置坐标轴的范围,设置坐标轴上的文字描述等. 基本用法 例如: import numpy as np import pandas as pd import matplotlib.pyplot as plt # 生成x轴上的数据:从-3到3,总共有50个点 x = np.lin

  • Python设置matplotlib.plot的坐标轴刻度间隔以及刻度范围

    一.用默认设置绘制折线图 import matplotlib.pyplot as plt x_values=list(range(11)) #x轴的数字是0到10这11个整数 y_values=[x**2 for x in x_values] #y轴的数字是x轴数字的平方 plt.plot(x_values,y_values,c='green') #用plot函数绘制折线图,线条颜色设置为绿色 plt.title('Squares',fontsize=24) #设置图表标题和标题字号 plt.t

  • python matplotlib 绘图 和 dpi对应关系详解

    我就废话不多说啦! dpi=1 600×400 dpi=2 1200×800 dpi=3 1800×1200 ........ dpi=21 (21×600)×(21×400) ---> 12600×8400 示例代码: ............... ............... plt_temp=y_axis plt_temp.resize(len(y_axis) , 1) plt_arr=np.concatenate((plt_arr,plt_temp ), axis=1) #print

  • OpenCV里的imshow()和Matplotlib.pyplot的imshow()的实现

    一.问题 在Python里使用OpenCV时,一般是通过cv2.imread读入图片,然后用plt.imshow显示图片,但最近学习OpenCV时这样做的结果与预期的结果有较大的出入.查找资料后,才明白OpenCV里的imshow()和Matplotlib.pyplot的imshow()在使用上有一些区别,不注意的话很容易就会导致很奇怪的结果. 下面的示例代码及运行结果显示了这种差异: import cv2 import matplotlib.pyplot as plt #以灰度模式读入图片 m

  • python matplotlib imshow热图坐标替换/映射实例

    今天遇到了这样一个问题,使用matplotlib绘制热图数组中横纵坐标自然是图片的像素排列顺序, 但是这样带来的问题就是画出来的x,y轴中坐标点的数据任然是x,y在数组中的下标, 实际中我们可能期望坐标点是其他的一个范围,如图: 坐标点标出来的是实际数组中的下标,而我希望纵坐标是频率,横坐标是其他的范围 plt.yticks(np.arange(0, 1024, 100), np.arange(10000, 11024, 100)) #第一个参数表示原来的坐标范围,100是每隔100个点标出一次

  • 使用python matplotlib contour画等高线图的详细过程讲解

    目录 函数画图 颜色取反 数据画图 选择性画图 总结 函数画图 以 z = x 2 + y 2 为例 #导入模块 import numpy as np import matplotlib.pyplot as plt #建立步长为0.01,即每隔0.01取一个点 step = 0.01 x = np.arange(-10,10,step) y = np.arange(-10,10,step) #也可以用x = np.linspace(-10,10,100)表示从-10到10,分100份 #将原始数

  • 如何利用Python matplotlib绘制雷达图

    本篇文章介绍使用matplotlib绘制雷达图. 雷达图也被称为网络图,蜘蛛图,星图,蜘蛛网图,是一个不规则的多边形.雷达图可以形象地展示相同事物的多维指标,雷达图几乎随处可见,应用场景非常多. 一.matplotlib绘制圆形雷达图 # coding=utf-8 import numpy as np import matplotlib.pyplot as plt results = [{"大学英语": 87, "高等数学": 79, "体育":

  • 详解Python+Matplotlib绘制面积图&热力图

    目录 1.绘制面积图 2.绘制热力图 1.绘制面积图 面积图常用于描述某指标随时间的变化程度.其面积也通常可以有一定的含义. 绘制面积图使用的是plt.stackplot()方法. 以小学时期学的 常见的追击相遇问题中的速度时间图像为例,下边绘制出一幅简单的v-t图像. 全局字体设为默认的黑体,时间为从第0秒到第10秒,描述的是甲乙两个物体的速度.显然,面积则表示位移. 标题部分字体使用楷体(将系统中的TTF字体文件"STKAITI.TTF"复制到了当前目录下). import mat

  • 使用python matplotlib画折线图实例代码

    目录 matplotlib简介 1.画折线图[一条示例] 2.画折线图带数据标签 3.画多条折线图: 4.画多条折线图分别带数据标签: 总结 matplotlib简介 matplotlib 是python最著名的绘图库,它提供了一整套和matlab相似的命令API,十分适合交互式地行制图.而且也可以方便地将它作为绘图控件,嵌入GUI应用程序中. 它的文档相当完备,并且Gallery页面中有上百幅缩略图,打开之后都有源程序.因此如果你需要绘制某种类型的图,只需要在这个页面中浏览/复制/粘贴一下,基

  • Python matplotlib之折线图的各种样式与画法总结

    目录 1. 折线形状 2. 数据点形状 3. 折线颜色 4. 添加网格 总结 上述图的完整代码如下: from numpy import * import numpy as np import pandas as pd import matplotlib.pyplot as plt import pylab as pl from mpl_toolkits.axes_grid1.inset_locator import inset_axes y1 = [0.92787363, 0.92436059

  • 解决python matplotlib imshow无法显示的问题

    实例如下所示: import matplotlib.pyplot as plt plt.imshow(img) #控制台打印出图像对象的信息,而图像没有显示 解决方法: #引入pylab解决 import matplotlib.pyplot as plt import pylab plt.imshow(img) pylab.show() 以上这篇解决python matplotlib imshow无法显示的问题就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们.

  • python matplotlib饼状图参数及用法解析

    这篇文章主要介绍了python matplotlib饼状图参数及用法解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 在python的matplotlib画图函数中,饼状图的函数为pie pie函数参数解读 plt.pie(x, explode=None, labels=None, colors=None, autopct=None, pctdistance=0.6, shadow=False, labeldistance=1.1, star

  • python matplotlib画盒图、子图解决坐标轴标签重叠的问题

    在使用matplotlib画图的时候将常会出现坐标轴的标签太长而出现重叠的现象,本文主要通过自身测过好用的解决办法进行展示,希望也能帮到大家,原图出现重叠现象例如图1: 代码为: data1=[[0.3765,0.3765,0.3765,0.3765,0.3765],[0.3765,0.3765,0.3765,0.3765,0.3765],[0.3765,0.3765,0.3765,0.3765,0.3765],[0.3765,0.3765,0.3765,0.3765,0.3765]] data

  • Python+matplotlib实现堆叠图的绘制

    目录 一.水平堆叠图 二.波浪形堆叠图 三.加上数据标签 注:本文的所有数据请移步—— 参考数据 一.水平堆叠图 堆叠图其实就是柱状图的一种特殊形式 from matplotlib import pyplot as plt plt.style.use('seaborn') plt.figure(figsize=(15,9)) plt.rcParams.update({'font.family': "Microsoft YaHei"}) plt.title("中国票房2021T

随机推荐