python数据可视化JupyterLab实用扩展程序Mito
目录
- 遇见 Mito
- 如何启动 Mito
- 数据透视表
- Mito 令人印象深刻的功能
- 可视化数据
- 自动代码生成
- Mito 安装
JupyterLab 是 Jupyter 主打的最新数据科学生产工具,某种意义上,它的出现是为了取代Jupyter Notebook。
它作为一种基于 web 的集成开发环境,你可以使用它编写notebook、操作终端、编辑markdown文本、打开交互模式、查看csv文件及图片等功能。
JupyterLab 最棒的体验就是有丰富的扩展插件,我记得过去我们不得不依赖 numpy 和 matplotlib 进行探索性数据分析。对我们来说幸运的是,那些日子早已一去不复返了。
Mito 来了!
遇见 Mito
Mito 是一个免费的 JupyterLab 扩展程序,可以使用 Excel 轻松探索和转换数据集。
当你启动 Mito 时,它会显示一个 Pandas Dataframe 的电子表格视图。只需单击几下,你就可以执行创建、读取、更新、删除操作。
如何启动 Mito
使用 Mito 加载数据并显示电子表格视图非常简单:
import mitosheet import pandas as pd url = 'https://raw.githubusercontent.com/mwaskom/seaborn-data/master/iris.csv' iris = pd.read_csv(url) mitosheet.sheet(iris)
Mito 打开一个强大的电子表格查看器,它可以过滤、排序和编辑数据。
数据透视表
只需点击几下,Mito 就可以创建一个数据透视表。它支持许多常见的聚合,如 sum、median、mean、count、unique 等。
数据透视表是一个分组值表,它聚合了一个或多个离散类别中更广泛的表的各个项目。
Mito 令人印象深刻的功能
电子表格公式
动态公式是 Excel 的杀手级功能。Excel 可以让不熟悉编程的人轻松创建复杂的电子表格。如果我告诉你 Mito 以 Excel方式支持动态公式会怎样。 这个功能真的让我很惊讶。
看看下面的动图,看看 Mito 的求和公式怎么工作:
可视化数据
近年来,Python 数据可视化库层出不穷,从 matplotlib 到 seaborn、plotly,只需几条命令就可以在 Python 中实现令人惊叹的可视化。
Mito 可以在不编写任何代码的情况下可视化你的数据,它支持条形图、箱线图、直方图和散点图。
自动代码生成
Mito 可以将每个操作转换为 Pandas 代码,然后你可以与同事共享这些代码。这对于经验不足的数据科学家来说,是一个很棒的功能。我做了一些点击,Mito 生成了以下代码片段:
Mito 安装
首先,你需要使用以下命令下载 Mito 的安装程序:
python -m pip install mitoinstaller
然后安装它,只需运行:
python -m mitoinstaller install
以上就是python数据可视化JupyterLab实用扩展程序Mito的详细内容,更多关于JupyterLab扩展程序的资料请关注我们其它相关文章!
相关推荐
-
python jupyter入门教程
目录 1.jupyter 2.jupyter基础操作 2.1windows更新pip库 2.2jupyter安装 2.3初次启动jupyter 2.4设置密码进入jupyter 3.创建一个jupyter文本 4.jupyter文本的用法 4.1保存和下载文本 4.2运行和切换代码 4.3多个代码运行 Jupyter Notebook 是一个在浏览器中使用的交互式的笔记本,可以实现将代码.文字完美结合起来,它的受众群体大多数是一些从事数据科学领域相关(机器学习.数据分析等)的人员. 1.jupy
-
在Python中画图(基于Jupyter notebook的魔法函数)
这篇文章主要介绍了在Python中画图(基于Jupyter notebook的魔法函数),文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 先展示一段相关的代码: #we test the accuracy of knn and find the k which makes the biggest accuracy k_range=list(range(1,26))#[1,25] scores=[] for k in k_range: knn=KN
-
python入门jupyter基础操作及文本用法
目录 1.jupyter简介 2.jupyter基础操作 2.1windows更新pip库 2.2jupyter安装 2.3初次启动jupyter 2.4设置密码进入jupyter #再次运行jupyter 3.创建一个jupyter文本 4.jupyter文本的用法 4.1保存和下载文本 4.2运行和切换代码 4.3多个代码运行 1.jupyter简介 Jupyter Notebook是一个开源的Web应用程序,允许用户创建和共享包含代码.方程式.可视化和文本的文档. 它的用途包括:数据清理和
-
Python数据可视化JupyterNotebook绘图生成高清图片
大家好,我是小五???? 最近有小伙伴问了个问题:如何在jupyter notebook,用Matplotlib画图时能够更"高清"? 今天正好跟大家聊聊,解决办法. 先举个小例子,用 Matplotlib 绘制极坐标图: import numpy as np import pandas as pd import matplotlib.pyplot as plt %matplotlib inline s = pd.Series(np.arange(20)) fig = plt.figu
-
python数据可视化JupyterLab实用扩展程序Mito
目录 遇见 Mito 如何启动 Mito 数据透视表 Mito 令人印象深刻的功能 可视化数据 自动代码生成 Mito 安装 JupyterLab 是 Jupyter 主打的最新数据科学生产工具,某种意义上,它的出现是为了取代Jupyter Notebook. 它作为一种基于 web 的集成开发环境,你可以使用它编写notebook.操作终端.编辑markdown文本.打开交互模式.查看csv文件及图片等功能. JupyterLab 最棒的体验就是有丰富的扩展插件,我记得过去我们不得不依赖 nu
-
python数据可视化使用pyfinance分析证券收益示例详解
目录 pyfinance简介 pyfinance包含六个模块 returns模块应用实例 收益率计算 CAPM模型相关指标 风险指标 基准比较指标 风险调整收益指标 综合业绩评价指标分析实例 结语 pyfinance简介 在查找如何使用Python实现滚动回归时,发现一个很有用的量化金融包--pyfinance.顾名思义,pyfinance是为投资管理和证券收益分析而构建的Python分析包,主要是对面向定量金融的现有包进行补充,如pyfolio和pandas等. pyfinance包含六个模块
-
Python数据可视化Pyecharts库的使用教程
目录 一.Pyecharts 概述 1.1 Pyecharts 特性 1.2 Pyecharts 入门案例 二.Pyecharts 配置项 2.1 全局配置项 2.2 系列配置项 三.Pyecharts 的总结 一.Pyecharts 概述 Pyechart 是一个用于生成 Echarts 图表(Echarts 是基于 Javascript 的开源可视化图表库)的 Python 第三方库. 1.1 Pyecharts 特性 根据官方文档的介绍,Pyecharts 的特性如下: 1.简洁的 API
-
学会Python数据可视化必须尝试这7个库
目录 一.Seaborn 二.Plotly 三.Geoplotlib 四.Gleam 五.ggplot 六.Bokeh 七.Missingo 一.Seaborn Seaborn 建于 matplotlib 库的之上.它有许多内置函数,使用这些函数,只需简单的代码行就可以创建漂亮的绘图.它提供了多种高级的可视化绘图和简单的语法,如方框图.小提琴图.距离图.关节图.成对图.热图等. 安装 ip install seaborn 主要特征: 可用于确定两个变量之间的关系. 在分析单变量或双变量分布时进行
-
python数据可视化Seaborn绘制山脊图
目录 1. 引言 2. 举个栗子 3.山脊图 4.扩展 5.结论 1. 引言 山脊图一般由垂直堆叠的折线图组成,这些折线图中的折线区域间彼此重叠,此外它们还共享相同的x轴. 山脊图经常以一种相对不常见且非常适合吸引大家注意力的紧凑图的形式表现.观察上图,我们给其起名叫Ridge plot是非常恰当的,因为上述图表看起来确实很像山的脊背.此外,上述图像还有另一个称呼叫做Joy Plots–这主要是因为Joy Division乐队在如下专辑封面上采用了这种可视化形式. 2. 举个栗子 在介绍完山脊图
-
Python 数据可视化超详细讲解折线图的实现
绘制简单的折线图 在使用matplotlib绘制简单的折线图之前首先需要安装matplotlib,直接在pycharm终端pip install matplotlib即可 使用matplotlib绘制简单的折线图,再对其进行定制,实现数据的可视化操作 import matplotlib.pyplot as plt # 导入pyplot模块并设置别名为plt squares = [1, 4, 9, 16, 25] plt.plot(squares) plt.show() # 打开matplotib
-
Python数据可视化之Pyecharts使用详解
目录 1. 安装Pyecharts 2. 图表基础 2.1 主题风格 2.2 图表标题 2.3 图例 2.4 提示框 2.5 视觉映射 2.6 工具箱 2.7 区域缩放 3. 柱状图 Bar模块 4. 折线图/面积图 Line模块 4.1 折线图 4.2 面积图 5.饼形图 5.1 饼形图 5.2 南丁格尔玫瑰图 6. 箱线图 Boxplot模块 7. 涟漪特效散点图 EffectScatter模块 8. 词云图 WordCloud模块 9. 热力图 HeatMap模块 10. 水球图 Liqu
-
Python数据可视化绘图实例详解
目录 利用可视化探索图表 1.数据可视化与探索图 2.常见的图表实例 数据探索实战分享 1.2013年美国社区调查 2.波士顿房屋数据集 利用可视化探索图表 1.数据可视化与探索图 数据可视化是指用图形或表格的方式来呈现数据.图表能够清楚地呈现数据性质, 以及数据间或属性间的关系,可以轻易地让人看图释义.用户通过探索图(Exploratory Graph)可以了解数据的特性.寻找数据的趋势.降低数据的理解门槛. 2.常见的图表实例 本章主要采用 Pandas 的方式来画图,而不是使用 Matpl
-
Python数据可视化探索实例分享
目录 一.数据可视化与探索图 二.常见的图表实例 1.折线图 2.散布图 3.直方图.长条图 4. 圆饼图.箱形图 三.社区调查 四.波士顿房屋数据集 一.数据可视化与探索图 数据可视化是指用图形或表格的方式来呈现数据.图表能够清楚地呈现数据性质, 以及数据间或属性间的关系,可以轻易地让人看图释义.用户通过探索图(Exploratory Graph)可以了解数据的特性.寻找数据的趋势.降低数据的理解门槛. 二.常见的图表实例 本章主要采用 Pandas 的方式来画图,而不是使用 Matplotl
-
python数据可视化绘制世界人口地图
目录 前言 获取两个字母的国别码 制作世界地图 绘制完整的世界人口地图 根据人口数量将国家分组 根据Pygal设置世界地图的样式 前言 数据来源:population_data.json, 先看一下数据长啥样 [ { "Country Name": "Arab World", "Country Code": "ARB", "Year": "1960", "Value"
随机推荐
- MYSQL 左连接右连接和内连接的详解及区别
- Redis教程(一):Redis简介
- 搞定windows关机慢 等待时间过长的问题
- 批处理判断是否特殊字符的实现代码
- 利用iOS绘制图片生成随机验证码示例代码
- Hibernate延迟加载技术详解
- Oracle最大日期获取方法
- PHP排序之二维数组的按照字母排序实现代码
- Yii数据模型中rules类验证器用法分析
- 自动刷新网页,自动刷新当前页面,JS调用
- jquery 实现窗口的最大化不论什么情况
- Powershell实现从注册表获取本地关联文件的扩展名
- SQLSERVER的版本信息和SP补丁信息查看方法
- javascript 全角转换实现代码
- java中List对象排序通用方法
- 十天学会php(1)
- 深入理解线程安全与Singleton
- 安卓版微信小程序跳一跳辅助
- javascript中数组的常用算法深入分析
- Java实现链表的常见操作算法详解