提高python代码运行效率的一些建议

1. 优化代码和算法

一定要先好好看看你的代码和算法。许多速度问题可以通过实现更好的算法或添加缓存来解决。本文所述都是关于这一主题的,但要遵循的一些一般指导方针是:

  • 测量,不要猜测。 测量代码中哪些部分运行时间最长,先把重点放在那些部分上。
  • 实现缓存。 如果你从磁盘、网络和数据库执行多次重复的查找,这可能是一个很大的优化之处。
  • 重用对象,而不是在每次迭代中创建一个新对象。Python 必须清理你创建的每个对象才能释放内存,这就是所谓的“垃圾回收”。许多未使用对象的垃圾回收会大大降低软件速度。
  • 尽可能减少代码中的迭代次数,特别是减少迭代中的操作次数。
  • 避免(深度)递归。 对于 Python 解释器来说,它需要大量的内存和维护(Housekeeping)。改用生成器和迭代之类的工具。
  • 减少内存使用。 一般来说,尽量减少内存的使用。例如,对一个巨大的文件进行逐行解析,而不是先将其加载到内存中。
  • 不要这样做。 听起来很傻是吧?但是你真的需要执行这个操作吗?不能晚点儿再执行吗?或者可以只执行一次,并且它的结果可以存储起来,而不是一遍又一遍地反复计算?

2. 使用 PyPy

你可能正在使用 Python 的参考实现 CPython。之所以称为 CPython,是因为它是用 C 语言编写的。如果你确定你的代码是 CPU 密集型(CPU bound)(如果你不知道这一术语,请参见本文“使用线程”一节)的话,那么你应该研究一下 PyPy,它是 CPython 的替代方案。这可能是一种快速解决方案,无需更改任何一行代码。

PyPy 声称,它的平均速度比 CPython 要快 4.4 倍。它是通过使用一种称为 Just-in-time(JIT,即时编译)技术来实现的。Java 和 .NET 框架就是 JIT 编译的其他著名的例子。相比之下,CPython 使用解释来执行代码。虽然这一做法提供了很大的灵活性,但速度也变得慢了下来。

使用 JIT,你的代码是在运行程序时即时编译的。它结合了 Ahead-of-time(AOT,提前编译)技术的速度优势(由 C 和 C++ 等语言使用)和解释的灵活性。另一个优点是 JIT 编译器可以在运行时不断优化代码。代码运行的时间越长,它就会变得越优化。

PyPy 在过去几年中取得了长足的进步,通常情况下,它可以作为 Python 2 和 Python 3 的简易替换方案。使用 Pipenv 这样的工具,它也可以完美地工作,试试看吧!

3. 使用线程

大部分软件都是 IO 密集型,而不是 CPU 密集型。如果你对这些术语还不熟悉的话,请看看下面的解释:

  • IO 密集型(I/O bound):软件主要是等待输入 / 输出操作完成才能工作。在从网络或缓慢的存储中获取数据时,通常会出现这种情况。
  • CPU 密集型(CPU bound):软件占用了大量的 CPU 资源。它使用了 CPU 所有的能力来产生所需的结果。

在等待来自网络或磁盘的应答时,你可以使用多个线程使其他部分保持运行状态。

一个线程是一个独立的执行序列。默认情况下,Python 程序有一个主线程。但你可以创建更多的主线程,并让 Python 在它们之间切换。这种切换发生得如此之快,以至于它们看上去就好像是在同时并排运行一样。

但与其他编程语言不同的是,Python 并不是同时运行的,而是轮流运行。这是因为 Python 中有一种全局解释器锁( Global Interpreter Lock,GIL)机制。这一点,以及 threading 库在 我撰写的关于 Python 并发性的文章 有详细的解释。

我们得到的结论是,线程对于 IO 密集型的软件有很大的影响,但对 CPU 密集型的软件毫无用处。

这是为什么呢?很简单。当一个线程在等待来自网络的答复时,其他线程可以继续运行。如果你要执行大量的网络请求,线程可以带来巨大的差异。如果你的线程正在进行繁重的计算,那么它们只是等待轮到它们继续计算,线程化只会带来更多的开销。

4. 使用 Asyncio

Asyncio 是 Python 中一个相对较新的核心库。它解决了与线程相同的问题:它加快了 IO 密集型软件的速度,但这是以不同的方式实现的。我将立即坦承我并非 Python 的 asyncio 拥趸。它相当复杂,特别是对于初学者来说。我遇到的另一个问题是, asyncio 库在过去几年中有了很大的发展。网上的教程和示例代码常常已经过时。不过,这并不意味着它就毫无用处。

5 同时使用多个处理器

如果你的软件是 CPU 密集型的,你通常可以用一种可以同时使用更多处理器的方式重写你的代码。通过这种方式,你就可以线性地调整执行速度。

这就是所谓的并行性,但并不是所有的算法都可以并行运行。例如,简单的将递归算法进行并行化是不可能的。但是几乎总有一种替代算法可以很好地并行工作。

使用更多处理处理器有两种方式:

  1. 在同一台机器内使用多个处理器和 / 或内核。在 Python 中,这可以通过 multiprocessing 库来完成。
  2. 使用计算机网络来使用多个处理器,分布在多台计算机上。我们称之为分布式计算。

这篇 关于 Python 并发性的文章 侧重于介绍如何在一台机器的范围内扩展 Python 软件的方法。它还介绍了 multiprocessing 库。如果你认为这是你需要的资料,一定要去看看。

与 threading 库不同, multiprocessing 库绕过了 Python 的全局解释器锁。它实际上是通过派生多个 Python 实例来实现这一点的。因此,现在你可以让多个 Python 进程同时运行你的代码,而不是在单个 Python 进程中轮流运行线程。

multiprocessing 库和 threading 库非常相似。可能出现的问题是:为什么还要考虑线程呢?答案是可以猜得到的。线程是“轻量”的:它需要更少的内存,因为它只需要一个正在运行的 Python 解释器。产生新进程也还有其开销。因此,如果你的代码是 IO 密集型的,线程可能就足够好了。

一旦你实现了软件的并行工作,那么在使用 Hadoop 之类的分布式计算方面就前进了一小步。通过利用云计算平台,你可以相对轻松地进行扩展规模。例如,你可以在云端中处理大型数据集,并在本地使用结果。使用混合操作的方式,你可以节省一些资金,因为云端中的算力非常昂贵。

总结

总结起来就是:

  • 首先考虑优化你的算法和代码。
  • 如果原始速度可以解决你的问题,请考虑使用 PyPy。
  • 对 IO 密集型软件使用 threading 库和 asyncio 。
  • 使用 multiprocessing 库解决 CPU 密集型问题。
  • 如果所有这些措施还不够的话,可以利用 Hadoop 等云计算平台进行扩展规模。

以上就是提高python代码运行效率的一些建议的详细内容,更多关于提高python代码运行效率的资料请关注我们其它相关文章!

(0)

相关推荐

  • python图片二值化提高识别率代码实例

    这篇文章主要介绍了python图片二值化提高识别率代码实例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 代码如下 import cv2from PIL import Imagefrom pytesseract import pytesseractfrom PIL import ImageEnhanceimport reimport string def createFile(filePath,newFilePath): img = Image

  • Python requests及aiohttp速度对比代码实例

    环境:centos7 python3.6 测试网址:www.bai.com 测试方式:抓取百度100次 结果: aio: 10.702147483825684s requests: 12.404678583145142s 异步框架的速度还是有显著提升的. 下面贡献代码: import aiohttp import time import requests import asyncio def test_requests(): """ 测试requessts请求百度100次时间

  • 一行代码让 Python 的运行速度提高100倍

    python一直被病垢运行速度太慢,但是实际上python的执行效率并不慢,慢的是python用的解释器Cpython运行效率太差. "一行代码让python的运行速度提高100倍"这绝不是哗众取宠的论调. 我们来看一下这个最简单的例子,从1一直累加到1亿. 最原始的代码: import time def foo(x,y): tt = time.time() s = 0 for i in range(x,y): s += i print('Time used: {} sec'.form

  • 盘点提高 Python 代码效率的方法

    第一招:蛇打七寸:定位瓶颈 首先,第一步是定位瓶颈.举个简单的栗子,一个函数可以从1秒优化到到0.9秒,另一个函数可以从1分钟优化到30秒,如果要花的代价相同,而且时间限制只能搞定一个,搞哪个?根据短板原理,当然选第二个啦. 一个有经验的程序员在这里一定会迟疑一下,等等?函数?这么说,还要考虑调用次数?如果第一个函数在整个程序中需要被调用100000次,第二个函数在整个程序中被调用1次,这个就不一定了.举这个栗子,是想说明,程序的瓶颈有的时候不一定一眼能看出来.还是上面那个选择,程序员的你应该有

  • 提高python代码运行效率的一些建议

    1. 优化代码和算法 一定要先好好看看你的代码和算法.许多速度问题可以通过实现更好的算法或添加缓存来解决.本文所述都是关于这一主题的,但要遵循的一些一般指导方针是: 测量,不要猜测. 测量代码中哪些部分运行时间最长,先把重点放在那些部分上. 实现缓存. 如果你从磁盘.网络和数据库执行多次重复的查找,这可能是一个很大的优化之处. 重用对象,而不是在每次迭代中创建一个新对象.Python 必须清理你创建的每个对象才能释放内存,这就是所谓的"垃圾回收".许多未使用对象的垃圾回收会大大降低软件

  • 提高python代码可读性利器pycodestyle使用详解

    目录 关于PEP-8 目的 安装 基本用法 高级用法 结论 编程是数据科学中不可或缺的技能,虽然创建脚本来执行基本功能很容易,但编写大规模可读性良好的代码需要更多的思考. 关于PEP-8 pycodestyle 检查器提供基于 PEP-8 样式约定的代码建议.那么 PEP-8 到底是什么呢? PEP 代表 Python 增强建议,PEP-8 是一个概述编写 Python 代码最佳实践的指南.它的主要目标是通过标准化代码样式来提高代码的整体一致性和可读性. 目的 快速浏览一下PEP-8文档,就会发

  • 分享10提高 Python 代码的可读性的技巧

    目录 1.字符串反转 2.首字母大写 3.查询唯一元素 4.变量交换 5.列表排序 6.列表推导式 7.合并字符串 8.拆分字符串 9.回文串检测 10.统计列表元素出现次数 1. 字符串反转 字符串反转有很多方法,咱们再这里介绍两种:一种是切片,一种是python字符串的reversed方法. # -!- coding: utf-8 -!- string = 'hello world' # 方法1 new_str = string[::-1] ic(new_str) # 方法二 new_str

  • 提高Python代码可读性的5个技巧分享

    目录 1. Comments 2. Explicit Typing 3. Docstrings (Documentation Strings) 4. Readable Variable Names 5. Avoiding Magic Numbers 总结 不知道小伙伴们是否有这样的困惑,当我们回顾自己 6 个月前编写的一些代码时,往往会看的一头雾水,或者是否当我们接手其他人的代码时, Python 中有许多方法可以帮助我们理解代码的内部工作原理,良好的编程习惯,可以使我们的工作事半功倍! 例如,

  • 高质量Python代码编写的5个优化技巧

    如今我使用 Python 已经很长时间了,但当我回顾之前写的一些代码时,有时候会感到很沮丧.例如,最早使用 Python 时,我写了一个名为 Sudoku 的游戏(GitHub地址:https://github.com/MichaelWashburnJr/PythonSudoku).这个游戏在当时算是我比较拿得出手的项目了.然而现在,我无法直接复制其代码并运行它,具体原因是我当时编码时没有添加一个setup.py 或者 requires.txt 文件,当然,这种错误我肯定不会再犯! 由此,我总结

  • 提升 Python 代码运行速度的6个技巧

    其实,Python 比我们想象的运行的要快.我们之所以有先入为主的认为Python运行慢,可能是我们平常的误用和缺乏使用技巧知识. 接下来让我们看看如何用一些简单的Trick来提高我们程序的运行性能 1.使用内置函数 Python中的许多内置函数都是用C实现的,并且经过了很好的优化.因此,如果熟悉这些内置函数,就可以提高Python代码的性能.一些常用的内置函数有sum().len().map().max()等. 假设我们有一个包含单词的列表,我们希望每个单词的首字母均变为大写.此时使用map(

  • 让Python代码更快运行的5种方法

    不论什么语言,我们都需要注意性能优化问题,提高执行效率.选择了脚本语言就要忍受其速度,这句话在某种程度上说明了Python作为脚本语言的不足之处,那就是执行效率和性能不够亮.尽管Python从未如C和Java一般快速,但是不少Python项目都处于开发语言领先位置. Python很简单易用,但大多数人使用Python都知道在处理密集型cpu工作时,它的数量级依然低于C.Java和JavaScript.但不少第三方不愿赘述Python的优点,而是决定自内而外提高其性能.如果你想让Python在同一

  • 六个窍门助你提高Python运行效率

    不喜欢Python的人经常会吐嘈Python运行太慢.但是,事实并非如此.尝试以下六个窍门,来为你的Python应用提速. 窍门一:关键代码使用外部功能包 Python简化了许多编程任务,但是对于一些时间敏感的任务,它的表现经常不尽人意.使用C/C++或机器语言的外部功能包处理时间敏感任务,可以有效提高应用的运行效率.这些功能包往往依附于特定的平台,因此你要根据自己所用的平台选择合适的功能包.简而言之,这个窍门要你牺牲应用的可移植性以换取只有通过对底层主机的直接编程才能获得的运行效率.以下是一些

  • 十条建议帮你提高Python编程效率

    程序员的时间很宝贵,Python这门语言虽然足够简单.优雅,但并不是说你使用Python编程,效率就一定会高.要想节省时间.提高效率,还是需要注意很多地方的. 今天就与大家分享资深Python程序员总结的10点建议,帮助大家大幅节省开发时间. 1. 不使用分号 使用分号在 Python 中是可选的:与其他面向对象语言不同,你不需要在每一条语句后面使用分号. 这看起来很简单,似乎也节省不了多少时间:但一旦你的代码量扩展到数千号,这些分号就变得分心且没有必要键入. 2. 使用称手的代码编辑器 选择一

随机推荐