详解Pandas中GroupBy对象的使用

目录
  • 使用 Groupby 三个步骤
  • 将原始对象拆分为组
  • 按组应用函数
    • Aggregation
    • Transformation
    • Filtration
    • 整合结果
  • 总结

今天,我们将探讨如何在 Python 的 Pandas 库中创建 GroupBy 对象以及该对象的工作原理。我们将详细了解分组过程的每个步骤,可以将哪些方法应用于 GroupBy 对象上,以及我们可以从中提取哪些有用信息

不要再观望了,一起学起来吧

使用 Groupby 三个步骤

首先我们要知道,任何 groupby 过程都涉及以下 3 个步骤的某种组合:

  • 根据定义的标准将原始对象分成组
  • 对每个组应用某些函数
  • 整合结果

让我先来大致浏览下今天用到的测试数据集

import pandas as pd
import numpy as np

pd.set_option('max_columns', None)

df = pd.read_csv('complete.csv')
df = df[['awardYear', 'category', 'prizeAmount', 'prizeAmountAdjusted', 'name', 'gender', 'birth_continent']]
df.head()

Output:

awardYear    category    prizeAmount    prizeAmountAdjusted    name    gender    birth_continent
0    2001    Economic Sciences    10000000    12295082    A. Michael Spence    male    North America
1    1975    Physics    630000    3404179    Aage N. Bohr    male    Europe
2    2004    Chemistry    10000000    11762861    Aaron Ciechanover    male    Asia
3    1982    Chemistry    1150000    3102518    Aaron Klug    male    Europe
4    1979    Physics    800000    2988048    Abdus Salam    male    Asia

将原始对象拆分为组

在这个阶段,我们调用 pandas DataFrame.groupby() 函数。我们使用它根据预定义的标准将数据分组,沿行(默认情况下,axis=0)或列(axis=1)。换句话说,此函数将标签映射到组的名称。

例如,在我们的案例中,我们可以按奖项类别对诺贝尔奖的数据进行分组:

grouped = df.groupby('category')

也可以使用多个列来执行数据分组,传递一个列列表即可。让我们首先按奖项类别对我们的数据进行分组,然后在每个创建的组中,我们将根据获奖年份应用额外的分组:

grouped_category_year = df.groupby(['category', 'awardYear'])

现在,如果我们尝试打印刚刚创建的两个 GroupBy 对象之一,我们实际上将看不到任何组:

print(grouped)

Output:

<pandas.core.groupby.generic.DataFrameGroupBy object at 0x0000026083789DF0>

我们要注意的是,创建 GroupBy 对象成功与否,只检查我们是否通过了正确的映射;在我们显式地对该对象使用某些方法或提取其某些属性之前,都不会真正执行拆分-应用-组合链的任何操作

为了简要检查生成的 GroupBy 对象并检查组的拆分方式,我们可以从中提取组或索引属性。它们都返回一个字典,其中键是创建的组,值是原始 DataFrame 中每个组的实例的轴标签列表(对于组属性)或索引(对于索引属性):

grouped.indices

Output:

{'Chemistry': array([  2,   3,   7,   9,  10,  11,  13,  14,  15,  17,  19,  39,  62,
         64,  66,  71,  75,  80,  81,  86,  92, 104, 107, 112, 129, 135,
        153, 169, 175, 178, 181, 188, 197, 199, 203, 210, 215, 223, 227,
        239, 247, 249, 258, 264, 265, 268, 272, 274, 280, 282, 284, 289,
        296, 298, 310, 311, 317, 318, 337, 341, 343, 348, 352, 357, 362,
        365, 366, 372, 374, 384, 394, 395, 396, 415, 416, 419, 434, 440,
        442, 444, 446, 448, 450, 455, 456, 459, 461, 463, 465, 469, 475,
        504, 505, 508, 518, 522, 523, 524, 539, 549, 558, 559, 563, 567,
        571, 572, 585, 591, 596, 599, 627, 630, 632, 641, 643, 644, 648,
        659, 661, 666, 667, 668, 671, 673, 679, 681, 686, 713, 715, 717,
        719, 720, 722, 723, 725, 726, 729, 732, 738, 742, 744, 746, 751,
        756, 759, 763, 766, 773, 776, 798, 810, 813, 814, 817, 827, 828,
        829, 832, 839, 848, 853, 855, 862, 866, 880, 885, 886, 888, 889,
        892, 894, 897, 902, 904, 914, 915, 920, 921, 922, 940, 941, 943,
        946, 947], dtype=int64),
 'Economic Sciences': array([  0,   5,  45,  46,  58,  90,  96, 139, 140, 145, 152, 156, 157,
        180, 187, 193, 207, 219, 231, 232, 246, 250, 269, 279, 283, 295,
        305, 324, 346, 369, 418, 422, 425, 426, 430, 432, 438, 458, 467,
        476, 485, 510, 525, 527, 537, 538, 546, 580, 594, 595, 605, 611,
        636, 637, 657, 669, 670, 678, 700, 708, 716, 724, 734, 737, 739,
        745, 747, 749, 750, 753, 758, 767, 800, 805, 854, 856, 860, 864,
        871, 882, 896, 912, 916, 924], dtype=int64),
 'Literature': array([ 21,  31,  40,  49,  52,  98, 100, 101, 102, 111, 115, 142, 149,
        159, 170, 177, 201, 202, 220, 221, 233, 235, 237, 253, 257, 259,
        275, 277, 278, 286, 312, 315, 316, 321, 326, 333, 345, 347, 350,
        355, 359, 364, 370, 373, 385, 397, 400, 403, 406, 411, 435, 439,
        441, 454, 468, 479, 480, 482, 483, 492, 501, 506, 511, 516, 556,
        569, 581, 602, 604, 606, 613, 614, 618, 631, 633, 635, 640, 652,
        653, 655, 656, 665, 675, 683, 699, 761, 765, 771, 774, 777, 779,
        780, 784, 786, 788, 796, 799, 803, 836, 840, 842, 850, 861, 867,
        868, 878, 881, 883, 910, 917, 919, 927, 928, 929, 930, 936],
       dtype=int64),
 'Peace': array([  6,  12,  16,  25,  26,  27,  34,  36,  44,  47,  48,  54,  61,
         65,  72,  78,  79,  82,  95,  99, 116, 119, 120, 126, 137, 146,
        151, 166, 167, 171, 200, 204, 205, 206, 209, 213, 225, 236, 240,
        244, 255, 260, 266, 267, 270, 287, 303, 320, 329, 356, 360, 361,
        377, 386, 387, 388, 389, 390, 391, 392, 393, 433, 447, 449, 471,
        477, 481, 489, 491, 500, 512, 514, 517, 528, 529, 530, 533, 534,
        540, 542, 544, 545, 547, 553, 555, 560, 562, 574, 578, 590, 593,
        603, 607, 608, 609, 612, 615, 616, 617, 619, 620, 628, 634, 639,
        642, 664, 677, 688, 697, 703, 705, 710, 727, 736, 787, 793, 795,
        806, 823, 846, 847, 852, 865, 875, 876, 877, 895, 926, 934, 935,
        937, 944, 948, 949], dtype=int64),
 'Physics': array([  1,   4,   8,  20,  23,  24,  30,  32,  38,  51,  59,  60,  67,
         68,  69,  70,  74,  84,  89,  97, 103, 105, 108, 109, 114, 117,
        118, 122, 125, 127, 128, 130, 133, 141, 143, 144, 155, 162, 163,
        164, 165, 168, 173, 174, 176, 179, 183, 195, 212, 214, 216, 222,
        224, 228, 230, 234, 238, 241, 243, 251, 256, 263, 271, 276, 291,
        292, 297, 301, 306, 307, 308, 323, 327, 328, 330, 335, 336, 338,
        349, 351, 353, 354, 363, 367, 375, 376, 378, 381, 382, 398, 399,
        402, 404, 405, 408, 410, 412, 413, 420, 421, 424, 428, 429, 436,
        445, 451, 453, 457, 460, 462, 470, 472, 487, 495, 498, 499, 509,
        513, 515, 521, 526, 532, 535, 536, 541, 548, 550, 552, 557, 561,
        564, 565, 566, 573, 576, 577, 579, 583, 586, 588, 592, 601, 610,
        621, 622, 623, 629, 647, 650, 651, 654, 658, 674, 676, 682, 684,
        690, 691, 693, 694, 695, 696, 698, 702, 707, 711, 714, 721, 730,
        731, 735, 743, 752, 755, 770, 772, 775, 781, 785, 790, 792, 797,
        801, 802, 808, 822, 833, 834, 835, 844, 851, 870, 872, 879, 884,
        887, 890, 893, 900, 901, 903, 905, 907, 908, 909, 913, 925, 931,
        932, 933, 938, 942, 945], dtype=int64),
 'Physiology or Medicine': array([ 18,  22,  28,  29,  33,  35,  37,  41,  42,  43,  50,  53,  55,
         56,  57,  63,  73,  76,  77,  83,  85,  87,  88,  91,  93,  94,
        106, 110, 113, 121, 123, 124, 131, 132, 134, 136, 138, 147, 148,
        150, 154, 158, 160, 161, 172, 182, 184, 185, 186, 189, 190, 191,
        192, 194, 196, 198, 208, 211, 217, 218, 226, 229, 242, 245, 248,
        252, 254, 261, 262, 273, 281, 285, 288, 290, 293, 294, 299, 300,
        302, 304, 309, 313, 314, 319, 322, 325, 331, 332, 334, 339, 340,
        342, 344, 358, 368, 371, 379, 380, 383, 401, 407, 409, 414, 417,
        423, 427, 431, 437, 443, 452, 464, 466, 473, 474, 478, 484, 486,
        488, 490, 493, 494, 496, 497, 502, 503, 507, 519, 520, 531, 543,
        551, 554, 568, 570, 575, 582, 584, 587, 589, 597, 598, 600, 624,
        625, 626, 638, 645, 646, 649, 660, 662, 663, 672, 680, 685, 687,
        689, 692, 701, 704, 706, 709, 712, 718, 728, 733, 740, 741, 748,
        754, 757, 760, 762, 764, 768, 769, 778, 782, 783, 789, 791, 794,
        804, 807, 809, 811, 812, 815, 816, 818, 819, 820, 821, 824, 825,
        826, 830, 831, 837, 838, 841, 843, 845, 849, 857, 858, 859, 863,
        869, 873, 874, 891, 898, 899, 906, 911, 918, 923, 939], dtype=int64)}

要查找 GroupBy 对象中的组数,我们可以从中提取 ngroups 属性或调用 Python 标准库的 len 函数:

print(grouped.ngroups)
print(len(grouped))

Output:

6
6

如果我们需要可视化每个组的所有或部分条目,那么可以遍历 GroupBy 对象:

for name, entries in grouped:
    print(f'First 2 entries for the "{name}" category:')
    print(30*'-')
    print(entries.head(2), '\n\n')

Output:

First 2 entries for the "Chemistry" category:
------------------------------
   awardYear   category  prizeAmount  prizeAmountAdjusted               name  \
2       2004  Chemistry     10000000             11762861  Aaron Ciechanover   
3       1982  Chemistry      1150000              3102518         Aaron Klug

gender birth_continent  
2   male            Asia  
3   male          Europe

First 2 entries for the "Economic Sciences" category:
------------------------------
   awardYear           category  prizeAmount  prizeAmountAdjusted  \
0       2001  Economic Sciences     10000000             12295082   
5       2019  Economic Sciences      9000000              9000000

name gender birth_continent  
0  A. Michael Spence   male   North America  
5   Abhijit Banerjee   male            Asia

First 2 entries for the "Literature" category:
------------------------------
    awardYear    category  prizeAmount  prizeAmountAdjusted  \
21       1957  Literature       208629              2697789   
31       1970  Literature       400000              3177966

name gender birth_continent  
21           Albert Camus   male          Africa  
31  Alexandr Solzhenitsyn   male          Europe

First 2 entries for the "Peace" category:
------------------------------
    awardYear category  prizeAmount  prizeAmountAdjusted  \
6        2019    Peace      9000000              9000000   
12       1980    Peace       880000              2889667

name gender birth_continent  
6          Abiy Ahmed Ali   male          Africa  
12  Adolfo Pérez Esquivel   male   South America

First 2 entries for the "Physics" category:
------------------------------
   awardYear category  prizeAmount  prizeAmountAdjusted          name gender  \
1       1975  Physics       630000              3404179  Aage N. Bohr   male   
4       1979  Physics       800000              2988048   Abdus Salam   male

birth_continent  
1          Europe  
4            Asia

First 2 entries for the "Physiology or Medicine" category:
------------------------------
    awardYear                category  prizeAmount  prizeAmountAdjusted  \
18       1963  Physiology or Medicine       265000              2839286   
22       1974  Physiology or Medicine       550000              3263449

name gender birth_continent  
18   Alan Hodgkin   male          Europe  
22  Albert Claude   male          Europe

相反,如果我们想以 DataFrame 的形式选择单个组,我们应该在 GroupBy 对象上使用 get_group() 方法:

grouped.get_group('Economic Sciences')

Output:

awardYear    category    prizeAmount    prizeAmountAdjusted    name    gender    birth_continent
0    2001    Economic Sciences    10000000    12295082    A. Michael Spence    male    North America
5    2019    Economic Sciences    9000000    9000000    Abhijit Banerjee    male    Asia
45    2012    Economic Sciences    8000000    8361204    Alvin E. Roth    male    North America
46    1998    Economic Sciences    7600000    9713701    Amartya Sen    male    Asia
58    2015    Economic Sciences    8000000    8384572    Angus Deaton    male    Europe
…    …    …    …    …    …    …    …
882    2002    Economic Sciences    10000000    12034660    Vernon L. Smith    male    North America
896    1973    Economic Sciences    510000    3331882    Wassily Leontief    male    Europe
912    2018    Economic Sciences    9000000    9000000    William D. Nordhaus    male    North America
916    1990    Economic Sciences    4000000    6329114    William F. Sharpe    male    North America
924    1996    Economic Sciences    7400000    9490424    William Vickrey    male    North America

按组应用函数

在拆分原始数据并检查结果组之后,我们可以对每个组执行以下操作之一或其组合:

  • Aggregation(聚合):计算每个组的汇总统计量(例如,组大小、平均值、中位数或总和)并为许多数据点输出单个数字
  • Transformation(变换):按组进行一些操作,例如计算每个组的z-score
  • Filtration(过滤):根据预定义的条件拒绝某些组,例如组大小、平均值、中位数或总和,还可以包括从每个组中过滤掉特定的行

Aggregation

要聚合 GroupBy 对象的数据(即按组计算汇总统计量),我们可以在对象上使用 agg() 方法:

# Showing only 1 decimal for all float numbers
pd.options.display.float_format = '{:.1f}'.format

grouped.agg(np.mean)

Output:

awardYear    prizeAmount    prizeAmountAdjusted
category            
Chemistry    1972.3    3629279.4    6257868.1
Economic Sciences    1996.1    6105845.2    7837779.2
Literature    1960.9    2493811.2    5598256.3
Peace    1964.5    3124879.2    6163906.9
Physics    1971.1    3407938.6    6086978.2
Physiology or Medicine    1970.4    3072972.9    5738300.7

上面的代码生成一个 DataFrame,其中组名作为其新索引,每个数字列的平均值作为分组

我们可以直接在 GroupBy 对象上应用其他相应的 Pandas 方法,而不仅仅是使用 agg() 方法。最常用的方法是 mean()median()mode()sum()size()count()min()max()std()var()(计算每个的方差 group)、describe()(按组输出描述性统计信息)和 nunique()(给出每个组中唯一值的数量)

grouped.sum()

Output:

awardYear    prizeAmount    prizeAmountAdjusted
category            
Chemistry    362912    667787418    1151447726
Economic Sciences    167674    512891000    658373449
Literature    227468    289282102    649397731
Peace    263248    418733807    825963521
Physics    419837    725890928    1296526352
Physiology or Medicine    431508    672981066    1256687857

通常情况下我们只对某些特定列或列的统计信息感兴趣,因此我们需要指定它们。在上面的例子中,我们绝对不想总结所有年份,相应的我们可能希望按奖品类别对奖品价值求和。为此我们可以选择 GroupBy 对象的 PrizeAmountAdjusted 列,就像我们选择 DataFrame 的列,然后对其应用 sum() 函数:

grouped['prizeAmountAdjusted'].sum()

Output:

category
Chemistry                 1151447726
Economic Sciences          658373449
Literature                 649397731
Peace                      825963521
Physics                   1296526352
Physiology or Medicine    1256687857
Name: prizeAmountAdjusted, dtype: int64

对于上面的代码片段,我们可以在选择必要的列之前使用对 GroupBy 对象应用函数的等效语法:grouped.sum()['prizeAmountAdjusted']。但是前面的语法更可取,因为它的性能更好,尤其是在大型数据集上,效果更为明显

如果我们需要聚合两列或更多列的数据,我们使用双方括号:

grouped[['prizeAmount', 'prizeAmountAdjusted']].sum()

Output:

prizeAmount    prizeAmountAdjusted
category        
Chemistry    667787418    1151447726
Economic Sciences    512891000    658373449
Literature    289282102    649397731
Peace    418733807    825963521
Physics    725890928    1296526352
Physiology or Medicine    672981066    1256687857

可以一次将多个函数应用于 GroupBy 对象的一列或多列。为此我们再次需要 agg() 方法和感兴趣的函数列表:

grouped[['prizeAmount', 'prizeAmountAdjusted']].agg([np.sum, np.mean, np.std])

Output:

prizeAmount    prizeAmountAdjusted
sum    mean    std    sum    mean    std
category                        
Chemistry    667787418    3629279.4    4070588.4    1151447726    6257868.1    3276027.2
Economic Sciences    512891000    6105845.2    3787630.1    658373449    7837779.2    3313153.2
Literature    289282102    2493811.2    3653734.0    649397731    5598256.3    3029512.1
Peace    418733807    3124879.2    3934390.9    825963521    6163906.9    3189886.1
Physics    725890928    3407938.6    4013073.0    1296526352    6086978.2    3294268.5
Physiology or Medicine    672981066    3072972.9    3898539.3    1256687857    5738300.7    3241781.0

此外,我们可以考虑通过传递字典将不同的聚合函数应用于 GroupBy 对象的不同列:

grouped.agg({'prizeAmount': [np.sum, np.size], 'prizeAmountAdjusted': np.mean})

Output:

prizeAmount    prizeAmountAdjusted
sum    size    mean
category            
Chemistry    667787418    184    6257868.1
Economic Sciences    512891000    84    7837779.2
Literature    289282102    116    5598256.3
Peace    418733807    134    6163906.9
Physics    725890928    213    6086978.2
Physiology or Medicine    672981066    219    5738300.7

Transformation

与聚合方法不同,转换方法返回一个新的 DataFrame,其形状和索引与原始 DataFrame 相同,但具有转换后的各个值。这里需要注意的是,transformation 一定不能修改原始 DataFrame 中的任何值,也就是这些操作不能原地执行

转换 GroupBy 对象数据的最常见的 Pandas 方法是 transform()。例如它可以帮助计算每个组的 z-score:

grouped[['prizeAmount', 'prizeAmountAdjusted']].transform(lambda x: (x - x.mean()) / x.std())

Output:

prizeAmount    prizeAmountAdjusted
0    1.0    1.3
1    -0.7    -0.8
2    1.6    1.7
3    -0.6    -1.0
4    -0.6    -0.9
…    …    …
945    -0.7    -0.8
946    -0.8    -1.1
947    -0.9    0.3
948    -0.5    -1.0
949    -0.7    -1.0

使用转换方法,我们还可以用组均值、中位数、众数或任何其他值替换缺失数据:

Output:

0        male
1        male
2        male
3        male
4        male
        ...  
945      male
946      male
947    female
948      male
949      male
Name: gender, Length: 950, dtype: object

我们当然还可以使用其他一些 Pandas 方法来转换 GroupBy 对象的数据:bfill()ffill()diff()pct_change()rank()shift()quantile()

Filtration

过滤方法根据预定义的条件从每个组中丢弃组或特定行,并返回原始数据的子集。例如我们可能希望只保留所有组中某个列的值,其中该列的组均值大于预定义值。在我们的 DataFrame 的情况下,让我们过滤掉所有组均值小于 7,000,000 的prizeAmountAdjusted 列,并在输出中仅保留该列:

grouped['prizeAmountAdjusted'].filter(lambda x: x.mean() > 7000000)

Output:

0      12295082
5       9000000
45      8361204
46      9713701
58      8384572
         ...   
882    12034660
896     3331882
912     9000000
916     6329114
924     9490424
Name: prizeAmountAdjusted, Length: 84, dtype: int64

另一个例子是过滤掉具有超过一定数量元素的组:

grouped['prizeAmountAdjusted'].filter(lambda x: len(x) < 100)

Output:

0      12295082
5       9000000
45      8361204
46      9713701
58      8384572
         ...   
882    12034660
896     3331882
912     9000000
916     6329114
924     9490424
Name: prizeAmountAdjusted, Length: 84, dtype: int64

在上述两个操作中,我们使用了 filter() 方法,将 lambda 函数作为参数传递。这样的函数,应用于整个组,根据该组与预定义统计条件的比较结果返回 True 或 False。换句话说,filter()方法中的函数决定了哪些组保留在新的 DataFrame 中

除了过滤掉整个组之外,还可以从每个组中丢弃某些行。这里有一些有用的方法是 first()last() 和 nth()。将其中一个应用于 GroupBy 对象会相应地返回每个组的第一个/最后一个/第 n 个条目:

grouped.last()

Output:

awardYear    prizeAmount    prizeAmountAdjusted    name    gender    birth_continent
category                        
Chemistry    1911    140695    7327865    Marie Curie    female    Europe
Economic Sciences    1996    7400000    9490424    William Vickrey    male    North America
Literature    1968    350000    3052326    Yasunari Kawabata    male    Asia
Peace    1963    265000    2839286    International Committee of the Red Cross    male    Asia
Physics    1972    480000    3345725    John Bardeen    male    North America
Physiology or Medicine    2016    8000000    8301051    Yoshinori Ohsumi    male    Asia

对于 nth() 方法,我们必须传递表示要为每个组返回的条目索引的整数:

grouped.nth(1)

Output:

awardYear    prizeAmount    prizeAmountAdjusted    name    gender    birth_continent
category                        
Chemistry    1982    1150000    3102518    Aaron Klug    male    Europe
Economic Sciences    2019    9000000    9000000    Abhijit Banerjee    male    Asia
Literature    1970    400000    3177966    Alexandr Solzhenitsyn    male    Europe
Peace    1980    880000    2889667    Adolfo Pérez Esquivel    male    South America
Physics    1979    800000    2988048    Abdus Salam    male    Asia
Physiology or Medicine    1974    550000    3263449    Albert Claude    male    Europe

上面的代码收集了所有组的第二个条目

另外两个过滤每个组中的行的方法是 head() 和 tail(),分别返回每个组的第一/最后 n 行(默认为 5):

grouped.head(3)

Output:

awardYear    category    prizeAmount    prizeAmountAdjusted    name    gender    birth_continent
0    2001    Economic Sciences    10000000    12295082    A. Michael Spence    male    North America
1    1975    Physics    630000    3404179    Aage N. Bohr    male    Europe
2    2004    Chemistry    10000000    11762861    Aaron Ciechanover    male    Asia
3    1982    Chemistry    1150000    3102518    Aaron Klug    male    Europe
4    1979    Physics    800000    2988048    Abdus Salam    male    Asia
5    2019    Economic Sciences    9000000    9000000    Abhijit Banerjee    male    Asia
6    2019    Peace    9000000    9000000    Abiy Ahmed Ali    male    Africa
7    2009    Chemistry    10000000    10958504    Ada E. Yonath    female    Asia
8    2011    Physics    10000000    10545557    Adam G. Riess    male    North America
12    1980    Peace    880000    2889667    Adolfo Pérez Esquivel    male    South America
16    2007    Peace    10000000    11301989    Al Gore    male    North America
18    1963    Physiology or Medicine    265000    2839286    Alan Hodgkin    male    Europe
21    1957    Literature    208629    2697789    Albert Camus    male    Africa
22    1974    Physiology or Medicine    550000    3263449    Albert Claude    male    Europe
28    1937    Physiology or Medicine    158463    4716161    Albert Szent-Györgyi    male    Europe
31    1970    Literature    400000    3177966    Alexandr Solzhenitsyn    male    Europe
40    2013    Literature    8000000    8365867    Alice Munro    female    North America
45    2012    Economic Sciences    8000000    8361204    Alvin E. Roth    male    North America

整合结果

split-apply-combine 链的最后一个阶段——合并结果——由Ppandas 在后台执行。它包括获取在 GroupBy 对象上执行的所有操作的输出并将它们重新组合在一起,生成新的数据结构,例如 Series 或 DataFrame。将此数据结构分配给一个变量,我们可以用它来解决其他任务

总结

今天我们介绍了使用 pandas groupby 函数和使用结果对象的许多知识

  • 分组过程所包括的步骤
  • split-apply-combine 链是如何一步一步工作的
  • 如何创建 GroupBy 对象
  • 如何简要检查 GroupBy 对象
  • GroupBy 对象的属性
  • 可应用于 GroupBy 对象的操作
  • 如何按组计算汇总统计量以及可用于此目的的方法
  • 如何一次将多个函数应用于 GroupBy 对象的一列或多列
  • 如何将不同的聚合函数应用于 GroupBy 对象的不同列
  • 如何以及为什么要转换原始 DataFrame 中的值
  • 如何过滤 GroupBy 对象的组或每个组的特定行
  • Pandas 如何组合分组过程的结果
  • 分组过程产生的数据结构

以上就是详解Pandas中GroupBy对象的使用的详细内容,更多关于Pandas GroupBy对象的资料请关注我们其它相关文章!

(0)

相关推荐

  • Pandas中GroupBy具体用法详解

    目录 简介 分割数据 多index get_group dropna groups属性 index的层级 group的遍历 聚合操作 通用聚合方法 同时使用多个聚合方法 NamedAgg 不同的列指定不同的聚合方法 转换操作 过滤操作 Apply操作 简介 pandas中的DF数据类型可以像数据库表格一样进行groupby操作.通常来说groupby操作可以分为三部分:分割数据,应用变换和和合并数据. 本文将会详细讲解Pandas中的groupby操作. 分割数据 分割数据的目的是将DF分割成为

  • Pandas高级教程之Pandas中的GroupBy操作

    目录 简介 分割数据 多index get_group dropna groups属性 index的层级 group的遍历 聚合操作 通用聚合方法 可以同时指定多个聚合方法: NamedAgg 不同的列指定不同的聚合方法 转换操作 过滤操作 Apply操作 简介 pandas中的DF数据类型可以像数据库表格一样进行groupby操作.通常来说groupby操作可以分为三部分:分割数据,应用变换和和合并数据. 本文将会详细讲解Pandas中的groupby操作. 分割数据 分割数据的目的是将DF分

  • Pandas之groupby( )用法笔记小结

    groupby官方解释 DataFrame.groupby(by=None, axis=0, level=None, as_index=True, sort=True, group_keys=True, squeeze=False, **kwargs) Group series using mapper (dict or key function, apply given function to group, return result as series) or by a series of

  • Pandas实现groupby分组统计的实践

    目录 1.创建数据和导入包 2.分组使用聚合函数做数据统计 3.遍历groupby的结果理解执行流程 4.实例分组探索天气数据 类似SQL:select city,max(temperature) from city_weather group by city; groupby:先对数据分组,然后在每个分组上应用聚合函数.转换函数 本次演示:一.分组使用聚合函数做数据统计二.遍历groupby的结果理解执行流程三.实例分组探索天气数据 1.创建数据和导入包 import pandas as pd

  • 详解Pandas中GroupBy对象的使用

    目录 使用 Groupby 三个步骤 将原始对象拆分为组 按组应用函数 Aggregation Transformation Filtration 整合结果 总结 今天,我们将探讨如何在 Python 的 Pandas 库中创建 GroupBy 对象以及该对象的工作原理.我们将详细了解分组过程的每个步骤,可以将哪些方法应用于 GroupBy 对象上,以及我们可以从中提取哪些有用信息 不要再观望了,一起学起来吧 使用 Groupby 三个步骤 首先我们要知道,任何 groupby 过程都涉及以下

  • 详解pandas中利用DataFrame对象的.loc[]、.iloc[]方法抽取数据

    pandas的DataFrame对象,本质上是二维矩阵,跟常规二维矩阵的差别在于前者额外指定了每一行和每一列的名称.这样内部数据抽取既可以用"行列名称(对应.loc[]方法)",也可以用"矩阵下标(对应.iloc[]方法)"两种方式进行. 下面具体说明: (以下程序均在Jupyter notebook中进行,部分语句的print()函数省略) 首先生成一个DataFrame对象: import pandas as pd score = [[34,67,87],[68

  • 详解python中groupby函数通俗易懂

    一.groupby 能做什么? python中groupby函数主要的作用是进行数据的分组以及分组后地组内运算! 对于数据的分组和分组运算主要是指groupby函数的应用,具体函数的规则如下: df[](指输出数据的结果属性名称).groupby([df[属性],df[属性])(指分类的属性,数据的限定定语,可以有多个).mean()(对于数据的计算方式--函数名称) 举例如下: print(df["评分"].groupby([df["地区"],df["类

  • 详解pandas中缺失数据处理的函数

    目录 一.缺失值类型 1.np.nan 2.None 3.NA标量 二.缺失值判断 1.对整个dataframe判断缺失 2.对某个列判断缺失 三.缺失值统计 1.列缺失 2.行缺失 3.缺失率 四.缺失值筛选 五.缺失值填充 六.缺失值删除 1.全部直接删除 2.行缺失删除 3.列缺失删除 4.按缺失率删除 七.缺失值参与计算 1.加法 2.累加 3.计数 4.聚合分组 五.源码 今天分享一篇pandas缺失值处理的操作指南! 一.缺失值类型 在pandas中,缺失数据显示为NaN.缺失值有3

  • 详解Pandas中stack()和unstack()的使用技巧

    目录 介绍 1.单层 2.多层次:简单案例 3. 多层次:缺失值 4. 多层次:规定要堆叠的层次 5. 多层次:删除缺失值 6. unstack: 简单案例 7. unstack:更多用法 结论 介绍 Pandas 提供了各种用于重塑 DataFrame 的内置方法.其中,stack() 和 unstack() 是最流行的 2 种重组列和行的方法: stack():从列到行堆叠 unstack():从行到列取消堆叠 stack() 和 unstack() 似乎使用起来相当简单,但你仍然应该知道一

  • 详解pandas中iloc, loc和ix的区别和联系

    Pandas库十分强大,但是对于切片操作iloc, loc和ix,很多人对此十分迷惑,因此本篇博客利用例子来说明这3者之一的区别和联系,尤其是iloc和loc. 对于ix,由于其操作有些复杂,我在另外一篇博客专门详细介绍ix. 首先,介绍这三种方法的概述: loc gets rows (or columns) with particular labels from the index. loc从索引中获取具有特定标签的行(或列).这里的关键是:标签.标签的理解就是name名字. iloc get

  • 详解 C# 中XML对象的序列化和反序列化

    这一篇主要是用来介绍关于C#中的XML序列化的问题,这个相信大家一定会经常使用它,特别是在WPF中,有时候我们需要将我们后台的数据保存在数据库中,从而在软件下一次启动的时候能够自动去加载这些数据,由于我们的这些Model中字段众多,如果单独进行保存那是不太现实的,这个时候将这些字段序列化成xml字符串并保存在数据库中就是一个不错的选择,当我们需要这些数据的时候我们也可以反过来将其序列化为一些字段,最终达到我们的效果,首先我们来看看是如何实现的? public class XMLUtil {   

  • 详解WPF中的对象资源

    在WPF中,所有继承自FrameworkElement的元素都包含一个Resources属性,这个属性就是我们这篇要讲的资源. 这一篇讲解的资源是不是上一篇的程序集资源(那个是在编译过程中打包到程序集中),这个是资源是我们想在公共的地方写一个对象让其他元素重复使用. 先贴个例子: <Window x:Class="NETResource.MainWindow" xmlns="http://schemas.microsoft.com/winfx/2006/xaml/pre

  • 详解JS中的对象字面量

    前言 在 ES6 之前,js中的对象字面量(也称为对象初始化器)是非常基础的.可以定义两种类型的属性: 键值对{name1: value1} 获取器{ get name(){..} }和 设置器{ set name(val){..}}的计算属性值 var myObject = { myString: 'value 1', get myNumber() { return this._myNumber; }, set myNumber(value) { this._myNumber = Number

  • 详解JavaScript中Arguments对象用途

    目录 前言 Arguments 的基本概念 Arguments 的作用 获取实参和形参的个数 修改实参值 改变实参的个数 检测参数合法性 函数的参数个数不确定时,用于访问调用函数的实参值 遍历或访问实参的值 总结 在实际开发中,Arguments 对象非常有用.灵活使用 Arguments 对象,可以提升使用函数的灵活性,增强函数在抽象编程中的适应能力和纠错能力. JavaScript 中 Arguments 对象的用途总结. 前言 相信我们很多人在代码开发的过程中都使用到过一个特殊的对象 --

随机推荐