python网络爬虫实战

目录
  • 一、概述
  • 二、原理
  • 三、爬虫分类
    • 1、传统爬虫
    • 2、聚焦爬虫
    • 3、通用网络爬虫(全网爬虫)
  • 四、网页抓取策略
    • 1、宽度优先搜索:
    • 2、深度优先搜索:
    • 3、最佳优先搜索:
    • 4、反向链接数策略:
    • 5、Partial PageRank策略:
  • 五、网页抓取的方法
    • 1、分布式爬虫
      • 现在比较流行的分布式爬虫:
    • 2、Java爬虫
    • 3、非Java爬虫
  • 六、项目实战
    • 1、抓取指定网页
      • 抓取某网首页
    • 2、抓取包含关键词网页
    • 3、下载贴吧中图片
    • 4、股票数据抓取
  • 六、结语

一、概述

网络爬虫(Web crawler),又称为网络蜘蛛(Web spider)或网络机器人(Web robot),主要用来爬取目标网站内容的程序或脚本。

从功能上来区分网络爬虫:

数据采集数据处理数据储存

以上三个部分,基本工作框架流程如下图:

二、原理

功能:下载网页数据,为搜索引擎系统提供数据来源。组件:控制器、解析器、资源库。

Web网络爬虫系统首先将种子URL放入下载队列,然后简单地从队首中取出一个URL下载其对应的网页。得到网页的内容将其储存后,再经过解析网页中的链接信息可以得到一些新的URL,将这些URL加入下载队列。然后取出一个URL,对其对应的网页进行下载,再解析,如此反复进行,直到遍历了整个网络或满足某种条件后才会停止下来。

三、爬虫分类

1、传统爬虫

传统爬虫从一个或若干初始网页的URL开始,获得初始网页上的URL,在抓取网页过程中,不断从当前页面上抽取新的URL放入队列,直到满足系统的一定停止条件。

2、聚焦爬虫

聚焦爬虫工作流程较为复杂,需要根据一定的网页分析算法过滤与主题无关的链接,保留有用链接并将其放入等待抓取URL队列。然后它将根据一定搜索策略从队列中选择下一步要抓取的网页URL,并重复上述过程,直到达到系统某一条件时停止。另外所有被爬虫抓取的网页将会被系统存储,进行一定的分析、过滤,并建立索引,以便之后的查询和检索。对于聚焦爬虫来说,这一过程所得到的分析结果还可能对以后的抓取过程给出反馈和指导。

3、通用网络爬虫(全网爬虫)

通用网络爬虫又称全网爬虫, 爬行对象从一些种子URL扩充到整个Web,主要为门户站点搜索引擎和大型Web服务提供商采集数据。这类网络爬虫的爬行范围和数量巨大,对于爬行速度和存储空间要求较高,对于爬行页面顺序要求相对较低,同时由于待刷新页面太多,通常采用并行工作方式,但需要较长时间才能刷新一次页面。虽然存在一定缺陷, 但通用网络爬虫适用于为搜索引擎搜索广泛的主题,有较强应用价值。

实际的网络爬虫系统通常是几种爬虫技术相结合实现的。

四、网页抓取策略

在爬虫系统中,待抓取URL队列是很重要的一部分。队列中URL以什么样顺序排列也是一个很重要的问题,因为这涉及先抓取哪个页面,后抓取哪个页面。

而决定这些URL排列顺序的方法,称之为抓取策略。

1、宽度优先搜索:

在抓取过程中,在完成当前层次搜索后,才进行下一层次搜索。

优点:算法设计和实现相对简单。缺点:随着抓取网页增多,大量无关网页将被下载并过滤,算法效率将变低。

2、深度优先搜索:

从起始网页开始,选择一个URL进入,分析这个网页中的URL,一个链接一个链接地抓取下去,直到处理完一条路线之后再处理下一条URL中的路线。

例如,下图中深度优先搜索的遍历方式时 A 到 B 到 D 到 E 到 F(ABDECF),而宽度优先搜索的遍历方式是 A B C D E F 。

3、最佳优先搜索:

按照一定的网页分析法,预测候选URL与目标网页的相似度,或者与主题的相关性,并选取评价最好的一个或几个URL进行抓取。

4、反向链接数策略:

反向链接数是指一个网页被其他网页链接指向的数量。反向链接数表示的是一个网页的内容受到其他人的推荐程度。

5、Partial PageRank策略:

Partial PageRank算法借鉴了PageRank算法的思想,对于已经下载的网页,连同待抓取URL队列中的URL,形成网页集合,计算每个页面的PageRank值,计算完之后,将待抓取URL队列中的URL按照PageRank值的大小排列,并按照该顺序抓取页面。

五、网页抓取的方法

1、分布式爬虫

用于目前互联网中海量URL管理,它包含多个爬虫(程序),每个爬虫(程序)需要完成的任务和单个爬行器类似。它们从互联网上下载网页,并把网页保存在本地的磁盘,从中抽取URL并沿着这些URL的指向继续爬行。由于并行爬行器需要分割下载任务,可能爬虫会将自己抽取的URL发送给其他爬虫。

这些爬虫可能分布在同一个局域网之中,或分散在不同地理位置。

现在比较流行的分布式爬虫:

Apache Nutch: 依赖hadoop运行,hadoop本身会消耗很多时间。Nutch是为搜索引擎设计的爬虫,如果不是要做搜索引擎,尽量不要选择Nutch。

2、Java爬虫

用Java开发的抓取网络资源的小程序,常用的工具包括Crawler4j、WebMagic、WebCollector等。

3、非Java爬虫

Scrapy: 由Python编写的,轻量级的、高层次的屏幕抓取框架。最吸引人的地方在于Scrapy是一个框架,任何使用者可以根据自己的需求进行进行修改,并具有一些高级函数,可以简化抓取过程。

六、项目实战

1、抓取指定网页

抓取某网首页

使用urllib模块,此模块提供了读取Web页面数据接口,可以像读取本地文件一样读取www和ftp上的数据。urllib是一个URL处理包,这个包中集合了一些处理URL的模块。

urllib.request 模块: 用来打开和读取URLs的。urllib.error 模块: 包含一些由 urllib.request 产生的错误,可以用try进行捕捉处理。urllib.parse 模块: 包含一些解析 URLs的方法。urllib.robotparser: 用来解析 robots.txt 文本文件。它提供了一个单独的 RobotFileParser 类,通过该类提供的 can_fetch() 方法测试爬虫是否可以下载一个页面。

以下代码为抓取某网页的代码:

import urllib.request

url = "https://www.douban.com/"
# 这边需要模拟浏览器才能进行抓取
headers = {'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.106 Safari/537.36'}
request = urllib.request.Request(url, headers=headers)
response = urllib.request.urlopen(request)
data = response.read()
# 这边需要转码才能正常显示
print(str(data, 'utf-8'))

# 下面代码可以打印抓取网页的各类信息
print(type(response))
print(response.geturl())
print(response.info())
print(response.getcode())

2、抓取包含关键词网页

代码如下:

import urllib.request

data = {'word': '海贼王'}
url_values = urllib.parse.urlencode(data)
url = "http://www.baidu.com/s?"
full_url = url + url_values
data = urllib.request.urlopen(full_url).read()
print(str(data, 'utf-8'))

3、下载贴吧中图片

代码如下:

import re
import urllib.request

# 获取网页源代码
def getHtml(url):
    page = urllib.request.urlopen(url)
    html = page.read()
    return html

# 获取网页所有图片
def getImg(html):
    reg = r'src="([.*\S]*\.jpg)" pic_ext="jpeg"'
    imgre = re.compile(reg)
    imglist = re.findall(imgre, html)
    return imglist

html = getHtml('https://tieba.baidu.com/p/3205263090')
html = html.decode('utf-8')
imgList = getImg(html)
imgName = 0
# 循环保存图片
for imgPath in imgList:
    f = open(str(imgName) + ".jpg", 'wb')
    f.write((urllib.request.urlopen(imgPath)).read())
    f.close()
    imgName += 1
    print('正在下载第 %s 张图片 ' % imgName)
print('该网站图片已经下载完')

4、股票数据抓取

代码如下:

import random
import re
import time
import urllib.request

# 抓取所需内容
user_agent = ["Mozilla/5.0 (Windows NT 10.0; WOW64)", 'Mozilla/5.0 (Windows NT 6.3; WOW64)',
              'Mozilla/5.0 (Windows NT 6.1) AppleWebKit/537.11 (KHTML, like Gecko) Chrome/23.0.1271.64 Safari/537.11',
              'Mozilla/5.0 (Windows NT 6.3; WOW64; Trident/7.0; rv:11.0) like Gecko',
              'Mozilla/5.0 (Windows NT 5.1) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/28.0.1500.95 Safari/537.36',
              'Mozilla/5.0 (Windows NT 6.1; WOW64; Trident/7.0; SLCC2; .NET CLR 2.0.50727; .NET CLR 3.5.30729; .NET CLR 3.0.30729; Media Center PC 6.0; .NET4.0C; rv:11.0) like Gecko)',
              'Mozilla/5.0 (Windows; U; Windows NT 5.2) Gecko/2008070208 Firefox/3.0.1',
              'Mozilla/5.0 (Windows; U; Windows NT 5.1) Gecko/20070309 Firefox/2.0.0.3',
              'Mozilla/5.0 (Windows; U; Windows NT 5.1) Gecko/20070803 Firefox/1.5.0.12',
              'Mozilla/5.0 (Macintosh; PPC Mac OS X; U; en) Opera 8.0',
              'Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.8.1.12) Gecko/20080219 Firefox/2.0.0.12 Navigator/9.0.0.6',
              'Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 6.1; Win64; x64; Trident/4.0)',
              'Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 6.1; Trident/4.0)',
              'Mozilla/5.0 (compatible; MSIE 10.0; Windows NT 6.1; WOW64; Trident/6.0; SLCC2; .NET CLR 2.0.50727; .NET CLR 3.5.30729; .NET CLR 3.0.30729; Media Center PC 6.0; InfoPath.2; .NET4.0C; .NET4.0E)',
              'Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.1 (KHTML, like Gecko) Maxthon/4.0.6.2000 Chrome/26.0.1410.43 Safari/537.1 ',
              'Mozilla/5.0 (compatible; MSIE 10.0; Windows NT 6.1; WOW64; Trident/6.0; SLCC2; .NET CLR 2.0.50727; .NET CLR 3.5.30729; .NET CLR 3.0.30729; Media Center PC 6.0; InfoPath.2; .NET4.0C; .NET4.0E; QQBrowser/7.3.9825.400)',
              'Mozilla/5.0 (Windows NT 6.1; WOW64; rv:21.0) Gecko/20100101 Firefox/21.0 ',
              'Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.1 (KHTML, like Gecko) Chrome/21.0.1180.92 Safari/537.1 LBBROWSER',
              'Mozilla/5.0 (compatible; MSIE 10.0; Windows NT 6.1; WOW64; Trident/6.0; BIDUBrowser 2.x)',
              'Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/536.11 (KHTML, like Gecko) Chrome/20.0.1132.11 TaoBrowser/3.0 Safari/536.11']

stock_total = []
headers = {
    'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.106 Safari/537.36'}
for page in range(1, 8):
    url = 'http://quote.stockstar.com/stock/ranklist_a_3_1_' + str(page) + '.html'
    request = urllib.request.Request(url=url, headers={"User-Agent": random.choice(user_agent)})
    response = urllib.request.urlopen(request)
    content = str(response.read(), 'gbk')
    pattern = re.compile('<tbody[\s\S]*</tbody')
    body = re.findall(pattern, str(content))
    pattern = re.compile('>(.*?)<')
    # 正则匹配
    stock_page = re.findall(pattern, body[0])
    stock_total.extend(stock_page)
    time.sleep(random.randrange(1, 4))
# 删除空白字符
stock_last = stock_total[:]
print(' 代码', '\t', ' 简称', '\t', '最新价', '\t', '涨跌幅', '\t', '涨跌额', '\t', '5分钟涨幅')

for i in range(0, len(stock_last), 13):
    print(stock_last[i], '\t', stock_last[i + 1], '\t', stock_last[i + 2], '   ', '\t', stock_last[i + 3], '   ', '\t',
          stock_last[i + 4], '\t', stock_last[i + 5])

六、结语

以上使用Python版本为 3.9。

本篇内容参考自《Python3 数据分析与机器学习实战》一书,编写此篇以学习为主。

写完就有点懒洋洋的咩~(+ω+)

到此这篇关于python网络爬虫实战的文章就介绍到这了,更多相关python 爬虫内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • python爬虫之利用selenium+opencv识别滑动验证并模拟登陆知乎功能

    滑动验证距离 分别获取验证码背景图和滑块图两张照片,然后利用opencv库,通过高斯模糊和Canny算法进行处理,然后通过matchTemplate方法进行两张图的匹配,获得滑动距离.需要注意的是,知乎验证码在进行操作的时候,需要在原有基础上再向右偏移10px距离 def get_distance(self, bg_img_path='./bg.png', slider_img_path='./slider.png'): """获取滑块移动距离""&quo

  • Python爬虫分析汇总

    目录 Python爬虫分析 一.程序说明 二.数据爬取 1.获取 CSDN 作者总榜数据 2.获取收藏夹列表 3.获取收藏数据 4.爬虫程序完整代码 5.爬取数据结果 三.数据分析及可视化 Python爬虫分析 前言: 计算机行业的发展太快了,有时候几天不学习,就被时代所抛弃了,因此对于我们程序员而言,最重要的就是要时刻紧跟业界动态变化,学习新的技术,但是很多时候我们又不知道学什么好,万一学的新技术并不会被广泛使用,太小众了对学习工作也帮助不大,这时候我们就想要知道大佬们都在学什么了,跟着大佬学

  • python简单爬虫--get方式详解

    目录 环境准备 进行爬虫 参考 总结 简单爬虫可以划分为get.post格式.其中,get是单方面的获取资源,而post存在交互,如翻译中需要文字输入.本文主要描述简单的get爬虫. 环境准备 安装第三方库 pip install requests pip install bs4 pip install lxml 进行爬虫 1.获取网页数据. import requests from bs4 import BeautifulSoup url = "https://cn.bing.com/sear

  • python动态网站爬虫实战(requests+xpath+demjson+redis)

    目录 前言 一.主要思路 1.观察网站 2.编写爬虫代码 二.爬虫实战 1.登陆获取cookie 三.总结 前言 之前简单学习过python爬虫基础知识,并且用过scrapy框架爬取数据,都是直接能用xpath定位到目标区域然后爬取.可这次碰到的需求是爬取一个用asp.net编写的教育网站并且将教学ppt一次性爬取下来,由于该网站部分内容渲染采用了js,所以比较难用xpath直接定位,同时发起下载ppt的请求比较难找. 经过琢磨和尝试后爬取成功,记录整个爬取思路供自己和大家学习.文章比较详细,对

  • Python爬虫教程使用Scrapy框架爬取小说代码示例

    目录 Scrapy框架简单介绍 创建Scrapy项目 创建Spider爬虫 Spider爬虫提取数据 items.py代码定义字段 fiction.py代码提取数据 pipelines.py代码保存数据 settings.py代码启动爬虫 结果展示 Scrapy框架简单介绍 Scrapy框架是一个基于Twisted的异步处理框架,是纯Python实现的爬虫框架,是提取结构性数据而编写的应用框架,其架构清晰,模块之间的耦合程度低,可扩展性极强,我们只需要少量的代码就能够快速抓取数据. 其框架如下图

  • python网络爬虫实战

    目录 一.概述 二.原理 三.爬虫分类 1.传统爬虫 2.聚焦爬虫 3.通用网络爬虫(全网爬虫) 四.网页抓取策略 1.宽度优先搜索: 2.深度优先搜索: 3.最佳优先搜索: 4.反向链接数策略: 5.Partial PageRank策略: 五.网页抓取的方法 1.分布式爬虫 现在比较流行的分布式爬虫: 2.Java爬虫 3.非Java爬虫 六.项目实战 1.抓取指定网页 抓取某网首页 2.抓取包含关键词网页 3.下载贴吧中图片 4.股票数据抓取 六.结语 一.概述 网络爬虫(Web crawl

  • Python网络爬虫与信息提取(实例讲解)

    课程体系结构: 1.Requests框架:自动爬取HTML页面与自动网络请求提交 2.robots.txt:网络爬虫排除标准 3.BeautifulSoup框架:解析HTML页面 4.Re框架:正则框架,提取页面关键信息 5.Scrapy框架:网络爬虫原理介绍,专业爬虫框架介绍 理念:The Website is the API ... Python语言常用的IDE工具 文本工具类IDE: IDLE.Notepad++.Sublime Text.Vim & Emacs.Atom.Komodo E

  • Python网络爬虫中的同步与异步示例详解

    一.同步与异步 #同步编程(同一时间只能做一件事,做完了才能做下一件事情) <-a_url-><-b_url-><-c_url-> #异步编程 (可以近似的理解成同一时间有多个事情在做,但有先后) <-a_url-> <-b_url-> <-c_url-> <-d_url-> <-e_url-> <-f_url-> <-g_url-> <-h_url-> <--i_ur

  • 关于Python网络爬虫requests库的介绍

    1. 什么是网络爬虫 简单来说,就是构建一个程序,以自动化的方式从网络上下载.解析和组织数据. 就像我们浏览网页的时候,对于我们感兴趣的内容我们会复制粘贴到自己的笔记本中,方便下次阅读浏览——网络爬虫帮我们自动完成这些内容 当然如果遇到一些无法复制粘贴的网站——网络爬虫就更能显示它的力量了 为什么需要网络爬虫 当我们需要做一些数据分析的时候——而很多时候这些数据存储在网页中,手动下载需要花费的时间太长,这时候我们就需要网络爬虫帮助我们自动爬取这些数据来(当然我们会过滤掉网页上那些没用的东西) 网

  • Python网络爬虫实例讲解

    聊一聊Python与网络爬虫. 1.爬虫的定义 爬虫:自动抓取互联网数据的程序. 2.爬虫的主要框架 爬虫程序的主要框架如上图所示,爬虫调度端通过URL管理器获取待爬取的URL链接,若URL管理器中存在待爬取的URL链接,爬虫调度器调用网页下载器下载相应网页,然后调用网页解析器解析该网页,并将该网页中新的URL添加到URL管理器中,将有价值的数据输出. 3.爬虫的时序图 4.URL管理器 URL管理器管理待抓取的URL集合和已抓取的URL集合,防止重复抓取与循环抓取.URL管理器的主要职能如下图

  • 详解Python网络爬虫功能的基本写法

    网络爬虫,即Web Spider,是一个很形象的名字.把互联网比喻成一个蜘蛛网,那么Spider就是在网上爬来爬去的蜘蛛. 1. 网络爬虫的定义 网络蜘蛛是通过网页的链接地址来寻找网页的.从网站某一个页面(通常是首页)开始,读取网页的内容,找到在网页中的其它链接地址,然后通过这些链接地址寻找下一个网页,这样一直循环下去,直到把这个网站所有的网页都抓取完为止.如果把整个互联网当成一个网站,那么网络蜘蛛就可以用这个原理把互联网上所有的网页都抓取下来.这样看来,网络爬虫就是一个爬行程序,一个抓取网页的

  • Python多线程爬虫实战_爬取糗事百科段子的实例

    多线程爬虫:即程序中的某些程序段并行执行, 合理地设置多线程,可以让爬虫效率更高 糗事百科段子普通爬虫和多线程爬虫 分析该网址链接得出: https://www.qiushibaike.com/8hr/page/页码/ 多线程爬虫也就和JAVA的多线程差不多,直接上代码 ''' #此处代码为普通爬虫 import urllib.request import urllib.error import re headers = ("User-Agent","Mozilla/5.0

  • python网络爬虫学习笔记(1)

    本文实例为大家分享了python网络爬虫的笔记,供大家参考,具体内容如下 (一)   三种网页抓取方法 1. 正则表达式: 模块使用C语言编写,速度快,但是很脆弱,可能网页更新后就不能用了. 2.Beautiful Soup 模块使用Python编写,速度慢. 安装: pip install beautifulsoup4 3. Lxml 模块使用C语言编写,即快速又健壮,通常应该是最好的选择. (二) Lxml安装 pip install lxml 如果使用lxml的css选择器,还要安装下面的

  • Python 网络爬虫--关于简单的模拟登录实例讲解

    和获取网页上的信息不同,想要进行模拟登录还需要向服务器发送一些信息,如账号.密码等等. 模拟登录一个网站大致分为这么几步: 1.先将登录网站的隐藏信息找到,并将其内容先进行保存(由于我这里登录的网站并没有额外信息,所以这里没有进行信息筛选保存) 2.将信息进行提交 3.获取登录后的信息 先给上源码 <span style="font-size: 14px;"># -*- coding: utf-8 -*- import requests def login(): sessi

  • Python网络爬虫之爬取微博热搜

    微博热搜的爬取较为简单,我只是用了lxml和requests两个库 url= https://s.weibo.com/top/summary?Refer=top_hot&topnav=1&wvr=6 1.分析网页的源代码:右键--查看网页源代码. 从网页代码中可以获取到信息 (1)热搜的名字都在<td class="td-02">的子节点<a>里 (2)热搜的排名都在<td class=td-01 ranktop>的里(注意置顶微博是

随机推荐