GC参考手册二java中垃圾回收原理解析

内存碎片整理

每次执行清除(sweeping), JVM 都必须保证不可达对象占用的内存能被回收重用。但这(最终)有可能会产生内存碎片(类似于磁盘碎片), 进而引发两个问题:

写入操作越来越耗时, 因为寻找一块足够大的空闲内存会变得非常麻烦。

在创建新对象时, JVM在连续的块中分配内存。如果碎片问题很严重, 直至没有空闲片段能存放下新创建的对象,就会发生内存分配错误(allocation error)。

要避免这类问题,JVM 必须确保碎片问题不失控。因此在垃圾收集过程中, 不仅仅是标记和清除, 还需要执行 “内存碎片整理” 过程。这个过程让所有可达对象(reachable objects)依次排列, 以消除(或减少)碎片。示意图如下所示:

分代假设

我们前面提到过,执行垃圾收集需要停止整个应用。很明显,对象越多则收集所有垃圾消耗的时间就越长。但可不可以只处理一个较小的内存区域呢? 为了探究这种可能性,研究人员发现,程序中的大多数可回收的内存可归为两类:

大部分对象很快就不再使用

还有一部分不会立即无用,但也不会持续(太)长时间

这些观测形成了 弱代假设(Weak Generational Hypothesis)。基于这一假设, VM中的内存被分为年轻代(Young Generation)和老年代(Old Generation)。老年代有时候也称为 年老区(Tenured)。

拆分为这样两个可清理的单独区域,允许采用不同的算法来大幅提高GC的性能。

这种方法也不是没有问题。例如,在不同分代中的对象可能会互相引用, 在收集某一个分代时就会成为 “事实上的” GC root。

当然,要着重强调的是,分代假设并不适用于所有程序。因为GC算法专门针对“要么死得快”,“否则活得长” 这类特征的对象来进行优化, JVM对收集那种存活时间半长不长的对象就显得非常尴尬了。

内存池

堆内存中的内存池划分也是类似的。不太容易理解的地方在于各个内存池中的垃圾收集是如何运行的。请注意,不同的GC算法在实现细节上可能会有所不同,但和本章所介绍的相关概念都是一致的。

新生代(Eden,伊甸园)

Eden 是内存中的一个区域, 用来分配新创建的对象。通常会有多个线程同时创建多个对象, 所以 Eden 区被划分为多个 线程本地分配缓冲区(Thread Local Allocation Buffer, 简称TLAB)。通过这种缓冲区划分,大部分对象直接由JVM 在对应线程的TLAB中分配, 避免与其他线程的同步操作。

如果 TLAB 中没有足够的内存空间, 就会在共享Eden区(shared Eden space)之中分配。如果共享Eden区也没有足够的空间, 就会触发一次 年轻代GC 来释放内存空间。如果GC之后 Eden 区依然没有足够的空闲内存区域, 则对象就会被分配到老年代空间(Old Generation)。

当 Eden 区进行垃圾收集时, GC将所有从 root 可达的对象过一遍, 并标记为存活对象。

我们曾指出,对象间可能会有跨代的引用, 所以需要一种方法来标记从其他分代中指向Eden的所有引用。这样做又会遭遇各个分代之间一遍又一遍的引用。JVM在实现时采用了一些绝招: 卡片标记(card-marking)。从本质上讲,JVM只需要记住Eden区中 “脏”对象的粗略位置, 可能有老年代的对象引用指向这部分区间。

标记阶段完成后, Eden中所有存活的对象都会被复制到存活区(Survivor spaces)里面。整个Eden区就可以被认为是空的, 然后就能用来分配新对象。这种方法称为 “标记-复制”(Mark and Copy): 存活的对象被标记, 然后复制到一个存活区(注意,是复制,而不是移动)。。

存活区

Eden 区的旁边是两个存活区, 称为 from 空间和 to 空间。需要着重强调的的是, 任意时刻总有一个存活区是空的(empty)。

空的那个存活区用于在下一次年轻代GC时存放收集的对象。年轻代中所有的存活对象(包括Edenq区和非空的那个 “from” 存活区)都会被复制到 ”to“ 存活区。GC过程完成后, ”to“ 区有对象,而 ‘from’ 区里没有对象。两者的角色进行正好切换 。

存活的对象会在两个存活区之间复制多次, 直到某些对象的存活 时间达到一定的阀值。分代理论假设, 存活超过一定时间的对象很可能会继续存活更长时间。

这类“ 年老” 的对象因此被提升(promoted )到老年代。提升的时候, 存活区的对象不再是复制到另一个存活区,而是迁移到老年代, 并在老年代一直驻留, 直到变为不可达对象。

为了确定一个对象是否“足够老”, 可以被提升(Promotion)到老年代,GC模块跟踪记录每个存活区对象存活的次数。每次分代GC完成后,存活对象的年龄就会增长。当年龄超过提升阈值(tenuring threshold), 就会被提升到老年代区域。

具体的提升阈值由JVM动态调整,但也可以用参数 -XX:+MaxTenuringThreshold 来指定上限。如果设置 -XX:+MaxTenuringThreshold=0 , 则GC时存活对象不在存活区之间复制,直接提升到老年代。现代 JVM 中这个阈值默认设置为15个 GC周期。这也是HotSpot中的最大值。

如果存活区空间不够存放年轻代中的存活对象,提升(Promotion)也可能更早地进行。

老年代(Old Generation)

老年代的GC实现要复杂得多。老年代内存空间通常会更大,里面的对象是垃圾的概率也更小。

老年代GC发生的频率比年轻代小很多。同时, 因为预期老年代中的对象大部分是存活的, 所以不再使用标记和复制(Mark and Copy)算法。而是采用移动对象的方式来实现最小化内存碎片。老年代空间的清理算法通常是建立在不同的基础上的。原则上,会执行以下这些步骤:

通过标志位(marked bit),标记所有通过 GC roots 可达的对象.

删除所有不可达对象

整理老年代空间中的内容,方法是将所有的存活对象复制,从老年代空间开始的地方,依次存放。

通过上面的描述可知, 老年代GC必须明确地进行整理,以避免内存碎片过多。

永久代(PermGen)

在Java 8 之前有一个特殊的空间,称为“永久代”(Permanent Generation)。这是存储元数据(metadata)的地方,比如 class 信息等。此外,这个区域中也保存有其他的数据和信息, 包括 内部化的字符串(internalized strings)等等。实际上这给Java开发者造成了很多麻烦,因为很难去计算这块区域到底需要占用多少内存空间。

预测失败导致的结果就是产生 java.lang.OutOfMemoryError: Permgen space 这种形式的错误。

除非 ·OutOfMemoryError· 确实是内存泄漏导致的,否则就只能增加 permgen 的大小,例如下面的示例,就是设置 permgen 最大空间为 256 MB:

java -XX:MaxPermSize=256m com.mycompany.MyApplication

元空间

既然估算元数据所需空间那么复杂, Java 8直接删除了永久代(Permanent Generation),改用 Metaspace。从此以后, Java 中很多杂七杂八的东西都放置到普通的堆内存里。

当然,像类定义(class definitions)之类的信息会被加载到 Metaspace 中。元数据区位于本地内存(native memory),不再影响到普通的Java对象。默认情况下, Metaspace的大小只受限于 Java进程可用的本地内存。

这样程序就不再因为多加载了几个类/JAR包就导致 java.lang.OutOfMemoryError: Permgen space.

注意, 这种不受限制的空间也不是没有代价的 —— 如果 Metaspace 失控, 则可能会导致很严重的内存交换(swapping), 或者导致本地内存分配失败。

如果需要避免这种最坏情况,那么可以通过下面这样的方式来限制 Metaspace 的大小, 如 256 MB:

java -XX:MaxMetaspaceSize=256m com.mycompany.MyApplication

Minor GC vs Major GC vs Full GC

垃圾收集事件(Garbage Collection events)通常分为: 小型GC(Minor GC) - 大型GC(Major GC) - 和完全GC(Full GC) 。本节介绍这些事件及其区别。然后你会发现这些区别也不是特别清晰。

最重要的是,应用程序是否满足 服务级别协议(Service Level Agreement, SLA), 并通过监控程序查看响应延迟和吞吐量。也只有那时候才能看到GC事件相关的结果。重要的是这些事件是否停止整个程序,以及持续多长时间。

虽然 Minor, Major 和 Full GC 这些术语被广泛应用, 但并没有标准的定义, 我们还是来深入了解一下具体的细节吧。

小型GC(Minor GC)

年轻代内存的垃圾收集事件称为小型GC。这个定义既清晰又得到广泛共识。对于小型GC事件,有一些有趣的事情你应该了解一下:

  • 当JVM无法为新对象分配内存空间时总会触发 Minor GC,比如 Eden 区占满时。所以(新对象)分配频率越高, Minor GC 的频率就越高。
  • Minor GC 事件实际上忽略了老年代。从老年代指向年轻代的引用都被认为是GC Root。而从年轻代指向老年代的引用在标记阶段全部被忽略。
  • 与一般的认识相反, Minor GC 每次都会引起全线停顿(stop-the-world ), 暂停所有的应用线程。对大多数程序而言,暂停时长基本上是可以忽略不计的, 因为 Eden 区的对象基本上都是垃圾, 也不怎么复制到存活区/老年代。如果情况不是这样, 大部分新创建的对象不能被垃圾回收清理掉, 则 Minor GC的停顿就会持续更长的时间。

所以 Minor GC 的定义很简单 —— Minor GC 清理的就是年轻代。

Major GC vs Full GC

值得一提的是, 这些术语并没有正式的定义 —— 无论是在JVM规范还是在GC相关论文中。

我们知道, Minor GC 清理的是年轻代空间(Young space),相应的,其他定义也很简单:

  • Major GC(大型GC) 清理的是老年代空间(Old space)。
  • Full GC(完全GC)清理的是整个堆, 包括年轻代和老年代空间。

杯具的是更复杂的情况出现了。很多 Major GC 是由 Minor GC 触发的, 所以很多情况下这两者是不可分离的。另一方面, 像G1这样的垃圾收集算法执行的是部分区域垃圾回收, 所以,额,使用术语“cleaning”并不是非常准确。

这也让我们认识到,不应该去操心是叫 Major GC 呢还是叫 Full GC, 我们应该关注的是: 某次GC事件 是否停止所有线程,或者是与其他线程并发执行。

这些混淆甚至根植于标准的JVM工具中。我的意思可以通过实例来说明。让我们来对比同一JVM中两款工具的GC信息输出吧。这个JVM使用的是 并发标记和清除收集器(Concurrent Mark and Sweep collector,-XX:+UseConcMarkSweepGC).

my-precious: me$ jstat -gc -t 4235 1s
Time S0C    S1C    S0U    S1U      EC       EU        OC         OU       MC     MU    CCSC   CCSU   YGC     YGCT    FGC    FGCT     GCT
 5.7 34048.0 34048.0  0.0   34048.0 272640.0 194699.7 1756416.0   181419.9  18304.0 17865.1 2688.0 2497.6      3    0.275   0      0.000    0.275
 6.7 34048.0 34048.0 34048.0  0.0   272640.0 247555.4 1756416.0   263447.9  18816.0 18123.3 2688.0 2523.1      4    0.359   0      0.000    0.359
 7.7 34048.0 34048.0  0.0   34048.0 272640.0 257729.3 1756416.0   345109.8  19072.0 18396.6 2688.0 2550.3      5    0.451   0      0.000    0.451
 8.7 34048.0 34048.0 34048.0 34048.0 272640.0 272640.0 1756416.0  444982.5  19456.0 18681.3 2816.0 2575.8      7    0.550   0      0.000    0.550
 9.7 34048.0 34048.0 34046.7  0.0   272640.0 16777.0  1756416.0   587906.3  20096.0 19235.1 2944.0 2631.8      8    0.720   0      0.000    0.720
10.7 34048.0 34048.0  0.0   34046.2 272640.0 80171.6  1756416.0   664913.4  20352.0 19495.9 2944.0 2657.4      9    0.810   0      0.000    0.810
11.7 34048.0 34048.0 34048.0  0.0   272640.0 129480.8 1756416.0   745100.2  20608.0 19704.5 2944.0 2678.4     10    0.896   0      0.000    0.896
12.7 34048.0 34048.0  0.0   34046.6 272640.0 164070.7 1756416.0   822073.7  20992.0 19937.1 3072.0 2702.8     11    0.978   0      0.000    0.978
<strong>13.7 34048.0 34048.0 34048.0  0.0   272640.0 211949.9 1756416.0   897364.4  21248.0 20179.6 3072.0 2728.1     12    1.087   1      0.004    1.091
14.7 34048.0 34048.0  0.0   34047.1 272640.0 245801.5 1756416.0   597362.6  21504.0 20390.6 3072.0 2750.3     13    1.183   2      0.050    1.233</strong>
15.7 34048.0 34048.0  0.0   34048.0 272640.0 21474.1  1756416.0   757347.0  22012.0 20792.0 3200.0 2791.0     15    1.336   2      0.050    1.386
16.7 34048.0 34048.0 34047.0  0.0   272640.0 48378.0  1756416.0   838594.4  22268.0 21003.5 3200.0 2813.2     16    1.433   2      0.050    1.484

此片段截取自JVM启动后的前17秒。根据这些信息可以得知: 有2次Full GC在12次Minor GC(YGC)之后触发执行, 总计耗时 50ms。当然,也可以通过具备图形界面的工具得出同样的信息, 比如 jconsole 或者 jvisualvm (或者最新的 jmc)。

在下结论之前, 让我们看看此JVM进程的GC日志。显然需要配置 -XX:+PrintGCDetails 参数,GC日志的内容更详细,结果也有一些不同:

java -XX:+PrintGCDetails -XX:+UseConcMarkSweepGC eu.plumbr.demo.GarbageProducer
3.157: [GC (Allocation Failure) 3.157: [ParNew: 272640K->34048K(306688K), 0.0844702 secs] 272640K->69574K(2063104K), 0.0845560 secs] [Times: user=0.23 sys=0.03, real=0.09 secs]
4.092: [GC (Allocation Failure) 4.092: [ParNew: 306688K->34048K(306688K), 0.1013723 secs] 342214K->136584K(2063104K), 0.1014307 secs] [Times: user=0.25 sys=0.05, real=0.10 secs]
... cut for brevity ...
11.292: [GC (Allocation Failure) 11.292: [ParNew: 306686K->34048K(306688K), 0.0857219 secs] 971599K->779148K(2063104K), 0.0857875 secs] [Times: user=0.26 sys=0.04, real=0.09 secs]
12.140: [GC (Allocation Failure) 12.140: [ParNew: 306688K->34046K(306688K), 0.0821774 secs] 1051788K->856120K(2063104K), 0.0822400 secs] [Times: user=0.25 sys=0.03, real=0.08 secs]
12.989: [GC (Allocation Failure) 12.989: [ParNew: 306686K->34048K(306688K), 0.1086667 secs] 1128760K->931412K(2063104K), 0.1087416 secs] [Times: user=0.24 sys=0.04, real=0.11 secs]
13.098: [<strong>GC (CMS Initial Mark)</strong> [1 CMS-initial-mark: 897364K(1756416K)] 936667K(2063104K), <strong>0.0041705 secs</strong>] [Times: user=0.02 sys=0.00, real=0.00 secs]
13.102: [CMS-concurrent-mark-start]
13.341: [CMS-concurrent-mark: 0.238/0.238 secs] [Times: user=0.36 sys=0.01, real=0.24 secs]
13.341: [CMS-concurrent-preclean-start]
13.350: [CMS-concurrent-preclean: 0.009/0.009 secs] [Times: user=0.03 sys=0.00, real=0.01 secs]
13.350: [CMS-concurrent-abortable-preclean-start]
13.878: [GC (Allocation Failure) 13.878: [ParNew: 306688K->34047K(306688K), 0.0960456 secs] 1204052K->1010638K(2063104K), 0.0961542 secs] [Times: user=0.29 sys=0.04, real=0.09 secs]
14.366: [CMS-concurrent-abortable-preclean: 0.917/1.016 secs] [Times: user=2.22 sys=0.07, real=1.01 secs]
14.366: [<strong>GC (CMS Final Remark)</strong> [YG occupancy: 182593 K (306688 K)]14.366: [Rescan (parallel) , 0.0291598 secs]14.395: [weak refs processing, 0.0000232 secs]14.395: [class unloading, 0.0117661 secs]14.407: [scrub symbol table, 0.0015323 secs]14.409: [scrub string table, 0.0003221 secs][1 CMS-remark: 976591K(1756416K)] 1159184K(2063104K), <strong>0.0462010 secs</strong>] [Times: user=0.14 sys=0.00, real=0.05 secs]
14.412: [CMS-concurrent-sweep-start]
14.633: [CMS-concurrent-sweep: 0.221/0.221 secs] [Times: user=0.37 sys=0.00, real=0.22 secs]
14.633: [CMS-concurrent-reset-start]
14.636: [CMS-concurrent-reset: 0.002/0.002 secs] [Times: user=0.00 sys=0.00, real=0.00 secs]

通过GC日志可以看到, 在12 次 Minor GC之后发生了一些 “不同的事情”。并不是两个 Full GC, 而是在老年代执行了一次 GC, 分为多个阶段执行:

  • 初始标记阶段(Initial Mark phase),耗时 0.0041705秒(约4ms)。此阶段是全线停顿(STW)事件,暂停所有应用线程,以便执行初始标记。
  • 标记和预清理阶段(Markup and Preclean phase)。和应用线程并发执行。
  • 最终标记阶段(Final Remark phase), 耗时 0.0462010秒(约46ms)。此阶段也是全线停顿(STW)事件。
  • 清除操作(Sweep)是并发执行的, 不需要暂停应用线程。

所以从实际的GC日志可以看到, 并不是执行了两次 Full GC操作, 而是只执行了一次清理老年代空间的 Major GC 。

如果只关心延迟, 通过后面 jstat 显示的数据, 也能得出正确的结果。它正确地列出了两次 STW 事件,总计耗时 50 ms。这段时间影响了所有应用线程的延迟。如果想要优化吞吐量, 这个结果就会有误导性 —— jstat 只列出了 stop-the-world 的初始标记阶段和最终标记阶段, jstat 的输出完全隐藏了并发执行的GC阶段。

以上就是GC参考手册二java中垃圾回收原理解析的详细内容,更多关于GC参考手册java垃圾回收的资料请关注我们其它相关文章!

原文链接:https://plumbr.io/handbook/garbage-collection-in-java

(0)

相关推荐

  • GC调优实战之过早提升Premature Promotion

    目录 过早提升(Premature Promotion) 如何测量提升速率 提升速率的意义 示例 过早提升的影响 解决方案 过早提升(Premature Promotion) 提升速率(promotion rate), 用于衡量单位时间内从年轻代提升到老年代的数据量.一般使用 MB/sec 作为单位, 和分配速率类似. JVM会将长时间存活的对象从年轻代提升到老年代.根据分代假设, 可能存在一种情况, 老年代中不仅有存活时间长的对象,也可能有存活时间短的对象.这就是过早提升:对象存活时间还不够长

  • GC参考手册jvm垃圾回收详解

    1,什么是垃圾回收? 顾名思义,垃圾收集(Garbage Collection)的意思就是 —— 找到垃圾并进行清理.但现有的垃圾收集实现却恰恰相反: 垃圾收集器跟踪所有正在使用的对象,并把其余部分当做垃圾 我们不抠细节, 先从基础开始, 介绍垃圾收集的一般特征.核心概念以及实现算法. 2,手动内存管理(Manual Memory Management) 当今的自动垃圾收集算法极为先进, 但我们先来看看什么是手动内存管理.在那个时候, 如果要存储共享数据, 必须显式地进行 内存分配(alloca

  • jvm垃圾回收之GC调优工具分析详解

    进行GC性能调优时, 需要明确了解, 当前的GC行为对系统和用户有多大的影响.有多种监控GC的工具和方法, 本章将逐一介绍常用的工具. JVM 在程序执行的过程中, 提供了GC行为的原生数据.那么, 我们就可以利用这些原生数据来生成各种报告.原生数据(raw data) 包括: 各个内存池的当前使用情况, 各个内存池的总容量, 每次GC暂停的持续时间, GC暂停在各个阶段的持续时间. 可以通过这些数据算出各种指标, 例如: 程序的内存分配率, 提升率等等.本章主要介绍如何获取原生数据. 后续的章

  • java垃圾回收原理之GC算法基础

    正文: 相关术语翻译说明: Mark,标记; Sweep,清除; Compact,整理; 也有人翻译为压缩,译者认为GC时不存在压缩这回事. Copy,复制; copy 用作名词时一般翻译为拷贝/副本,用作动词时翻译为复制. 注: <垃圾回收算法手册>将 Mark and Sweep 翻译为: 标记-清扫算法; 译者认为 标记-清除 更容易理解. 本章简要介绍GC的基本原理和相关技术, 下一章节再详细讲解GC算法的具体实现.各种垃圾收集器的实现细节虽然并不相同,但总体而言,垃圾收集器都专注于两

  • GC调优实战之高分配速率High Allocation Rate

    高分配速率(High Allocation Rate) 分配速率(Allocation rate)表示单位时间内分配的内存量.通常使用 MB/sec作为单位, 也可以使用 PB/year 等. 分配速率过高就会严重影响程序的性能.在JVM中会导致巨大的GC开销. 如何测量分配速率? 指定JVM参数: -XX:+PrintGCDetails -XX:+PrintGCTimeStamps , 通过GC日志来计算分配速率. GC日志如下所示: 0.291: [GC (Allocation Failur

  • jvm垃圾回收GC调优基础原理分析

    目录 核心概念(Core Concepts) Latency(延迟) Throughput(吞吐量) Capacity(系统容量) 相关示例 Tuning for Latency(调优延迟指标) Tuning for Throughput(吞吐量调优) Tuning for Capacity(调优系统容量) 说明: Capacity: 性能,能力,系统容量; 文中翻译为”系统容量“; 意为硬件配置. GC调优(Tuning Garbage Collection)和其他性能调优是同样的原理.初学者

  • GC参考手册二java中垃圾回收原理解析

    内存碎片整理 每次执行清除(sweeping), JVM 都必须保证不可达对象占用的内存能被回收重用.但这(最终)有可能会产生内存碎片(类似于磁盘碎片), 进而引发两个问题: 写入操作越来越耗时, 因为寻找一块足够大的空闲内存会变得非常麻烦. 在创建新对象时, JVM在连续的块中分配内存.如果碎片问题很严重, 直至没有空闲片段能存放下新创建的对象,就会发生内存分配错误(allocation error). 要避免这类问题,JVM 必须确保碎片问题不失控.因此在垃圾收集过程中, 不仅仅是标记和清除

  • java中fork-join的原理解析

    ForkJoinTask就是ForkJoinPool里面的每一个任务.他主要有两个子类:RecursiveAction和RecursiveTask.然后通过fork()方法去分配任务执行任务,通过join()方法汇总任务结果, 这就是整个过程的运用.他有两个子类,使用这两个子类都可以实现我们的任务分配和计算. (1)RecursiveAction 一个递归无结果的ForkJoinTask(没有返回值) (2)RecursiveTask 一个递归有结果的ForkJoinTask(有返回值) For

  • JVM垃圾回收原理解析

    概述 Java运行时区域中,程序计数器,虚拟机栈,本地方法栈三个区域随着线程的而生,随线程而死,这几个区域的内存分配和回收都具备确定性,不需要过多考虑回收问题.而Java堆和方法区则不一样,一个接口的多个实现类需要的内存不一样,一个方法的多个分支需要的内存可能也不一眼,我们只有在运行期,才能知道会创建的对象,这部分的内存分配和回收,是垃圾回收器所关注的.垃圾回收器需要完成三个问题:那些内存需要回收:什么时候回收以及如何回收. 那些垃圾需要回收 垃圾回收的基本思想是考察一个对象的可达性,即从根节点

  • Java 可视化垃圾回收_动力节点Java学院整理

    Ben Evans是一名资深培训师兼顾问,他在演讲可视化垃圾回收中从基础谈起讨论了垃圾回收. 以下是对其演讲的简短总结. 基础 当谈到释放不再使用的内存,垃圾回收已经在很大程度上取代了早期技术,比如手动内存管理和引用计数. 这是件好事,因为内存管理令人厌烦,学究式地簿记是计算机擅长的,而不是人擅长的.在这方面,语言的运行时环境比人强. 现代的垃圾回收非常高效,远远超过早期语言中典型的手工分配.通常,具有其它语言背景的人只盯着垃圾回收造成的中断,却没有完全理解自动内存管理发生作用的上下文环境. 标

  • 老生常谈Java虚拟机垃圾回收机制(必看篇)

    在Java虚拟机中,对象和数组的内存都是在堆中分配的,垃圾收集器主要回收的内存就是再堆内存中.如果在Java程序运行过程中,动态创建的对象或者数组没有及时得到回收,持续积累,最终堆内存就会被占满,导致OOM. JVM提供了一种垃圾回收机制,简称GC机制.通过GC机制,能够在运行过程中将堆中的垃圾对象不断回收,从而保证程序的正常运行. 垃圾对象的判定 我们都知道,所谓"垃圾"对象,就是指我们在程序的运行过程中不再有用的对象,即不再存活的对象.那么怎么来判断堆中的对象是"垃圾&q

  • Java的垃圾回收机制实例分析

    本文实例讲述了Java的垃圾回收机制.分享给大家供大家参考,具体如下: 一 点睛 当程序创建对象.数组等引用类型实体时,系统都会在堆内存中为之分配一块内存区,对象就保存在这块内存区中,当这块内存不再被任何引用变量引用时,这块内存就变成了垃圾,等待垃圾回收机制进行回收. 垃圾回收机制的特点: 垃圾回收机制只负责回收堆内存中对象,不会回收任何任何物理资源(例如数据库连接,网络IO等资源). 程序无法精确控制垃圾回收的运行,垃圾回收会在合适时候进行垃圾回收.当对象永久性地失去引用后,系统就会在合适时候

  • .Net的GC垃圾回收原理及实现

    一.先了解下必备的知识前提 内存中的托管与非托管,可简单理解为: 托管:可借助GC从内存中释放的数据对象(以下要描述的内容点) 非托管:必须手工借助Dispose释放资源(实现自IDisposable)的对象 内存中有栈和堆的概念区分,仅简单说明: 栈:先进后出 的特点(这里不再详细阐述) 堆:存放数据对象实例的内存空间(以下要描述的内容点) 二..Net GC的简单描述 GC垃圾回收是对于内存堆的处理过程. 当一个应用程序进程创建时,会为此应用程序在物理内存堆中分配一块虚拟的连续性内存空间,以

  • 简单理解Java的垃圾回收机制与finalize方法的作用

    垃圾回收器要回收对象的时候,首先要调用这个类的finalize方法(你可以 写程序验证这个结论),一般的纯Java编写的Class不需要重新覆盖这个方法,因为Object已经实现了一个默认的,除非我们要实现特殊的功能(这 里面涉及到很多东西,比如对象空间树等内容). 不过用Java以外的代码编写的Class(比如JNI,C++的new方法分配的内存),垃圾回收器并不能对这些部分进行正确的回收,这时就需要我们覆盖默认的方法来实现对这部分内存的正确释放和回收(比如C++需要delete). 总之,f

  • PHP中垃圾回收相关函数的使用

    之前我们已经学习过 PHP 中的引用计数以及垃圾回收机制的概念.这些内容非常偏理论,也是非常常见的面试内容.而今天介绍的则是具体的关于垃圾回收的一些功能函数.关于之前的两篇介绍文章,大家可以到文章底部查看. 再谈循环引用以及强制清理循环引用 我们为什么要强调 "循环引用" 呢?其实,在默认情况下,我们直接 unset() 掉一个没有被其他变量引用的变量时,就会让这个变量的引用计数变为0.这时,PHP 默认的垃圾回收机制就会直接清除掉这个变量.比如: $a = new stdClass;

随机推荐