Python图像处理之图像金字塔详解

目录
  • 一.图像金字塔原理
  • 二.图像向上取样
  • 三.图像向下取样
  • 四.总结

一.图像金字塔原理

上一篇文章讲解的图像采样处理可以降低图像的大小,本文将补充图像金字塔知识,了解专门用于图像向上采样和向下采样的pyrUp()和pyrDown()函数。

图像金字塔是指由一组图像且不同分别率的子图集合,它是图像多尺度表达的一种,以多分辨率来解释图像的结构,主要用于图像的分割或压缩。一幅图像的金字塔是一系列以金字塔形状排列的分辨率逐步降低,且来源于同一张原始图的图像集合。如图10-1所示,它包括了四层图像,将这一层一层的图像比喻成金字塔。图像金字塔可以通过梯次向下采样获得,直到达到某个终止条件才停止采样,在向下采样中,层级越高,则图像越小,分辨率越低[1-2]。

生成图像金字塔主要包括两种方式:

  • 向下取样
  • 向上取样

在图中,将图像G0转换为G1、G2、G3,图像分辨率不断降低的过程称为向下取样;将G3转换为G2、G1、G0,图像分辨率不断增大的过程称为向上取样。

二.图像向上取样

在图像向上取样是由小图像不断放图像的过程。它将图像在每个方向上扩大为原图像的2倍,新增的行和列均用0来填充,并使用与“向下取样”相同的卷积核乘以4,再与放大后的图像进行卷积运算,以获得“新增像素”的新值。如图10-2所示,它在原始像素45、123、89、149之间各新增了一行和一列值为0的像素。

在OpenCV中,向上取样使用的函数为pyrUp(),其原型如下所示:

dst = pyrUp(src[, dst[, dstsize[, borderType]]])

– src表示输入图像,

– dst表示输出图像,和输入图像具有一样的尺寸和类型

– dstsize表示输出图像的大小,默认值为Size()

– borderType表示像素外推方法,详见cv::bordertypes

向上取样的代码如下所示:

# -*- coding: utf-8 -*-
# By:Eastmount
import cv2  
import numpy as np  
import matplotlib.pyplot as plt

#读取原始图像
img = cv2.imread('lena-small.png')

#图像向上取样
r = cv2.pyrUp(img)

#显示图像
cv2.imshow('original', img)
cv2.imshow('PyrUp', r)
cv2.waitKey()
cv2.destroyAllWindows()

输出结果如图10-3所示,它将原始图像扩大为原图像的四倍。

多次向上取样的代码如下。

# -*- coding: utf-8 -*-
# By:Eastmount
import cv2  
import numpy as np  
import matplotlib.pyplot as plt

#读取原始图像
img = cv2.imread('lena-small.png')

#图像向上取样
r1 = cv2.pyrUp(img)
r2 = cv2.pyrUp(r1)
r3 = cv2.pyrUp(r2)

#显示图像
cv2.imshow('original', img)
cv2.imshow('PyrUp1', r1)
cv2.imshow('PyrUp2', r2)
cv2.imshow('PyrUp3', r3)
cv2.waitKey()
cv2.destroyAllWindows()

输出结果如图10-4所示,每次向上取样均为上次图像的四倍,但图像的清晰度会降低。

三.图像向下取样

在图像向下取样中,使用最多的是高斯金字塔。它将对图像Gi进行高斯核卷积,并删除原图中所有的偶数行和列,最终缩小图像。其中,高斯核卷积运算就是对整幅图像进行加权平均的过程,每一个像素点的值,都由其本身和邻域内的其他像素值(权重不同)经过加权平均后得到。常见的3×3和5×5高斯核如下:

高斯核卷积让临近中心的像素点具有更高的重要度,对周围像素计算加权平均值,如图10-5所示,其中心位置权重最高为0.4。

在OpenCV中,向下取样使用的函数为pyrDown(),其原型如下所示:

dst = pyrDown(src[, dst[, dstsize[, borderType]]])

– src表示输入图像,

– dst表示输出图像,和输入图像具有一样的尺寸和类型

– dstsize表示输出图像的大小,默认值为Size()

– borderType表示像素外推方法,详见cv::bordertypes

向下取样的代码如下所示:

# -*- coding: utf-8 -*-
# By:Eastmount
import cv2  
import numpy as np  
import matplotlib.pyplot as plt

#读取原始图像
img = cv2.imread('nv.png')

#图像向下取样
r = cv2.pyrDown(img)

#显示图像
cv2.imshow('original', img)
cv2.imshow('PyrDown', r)
cv2.waitKey()
cv2.destroyAllWindows()

输出结果如图10-6所示,它将原始图像压缩成原图的四分之一。

多次向下取样的代码如下。

# -*- coding: utf-8 -*-
# By:Eastmount
import cv2  
import numpy as np  
import matplotlib.pyplot as plt

#读取原始图像
img = cv2.imread('nv.png')

#图像向下取样
r1 = cv2.pyrDown(img)
r2 = cv2.pyrDown(r1)
r3 = cv2.pyrDown(r2)

#显示图像
cv2.imshow('original', img)
cv2.imshow('PyrDown1', r1)
cv2.imshow('PyrDown2', r2)
cv2.imshow('PyrDown3', r3)
cv2.waitKey()
cv2.destroyAllWindows()

输出结果如图10-7所示,每次向下取样均为上次的四分之一,并且图像的清晰度会降低。

四.总结

本文主要讲解图像金字塔处理,包括图像向上取样和向下取样。需要注意,向上取样放大后的图像比原始图像要模糊,而每次向下取样会删除偶数行和列,它会不停地丢失图像的信息。此外,向上采样和向下采样不是互逆的操作,经过两种操作后,是无法恢复原始图像的。

以上就是Python图像处理之图像金字塔详解的详细内容,更多关于Python图像金字塔的资料请关注我们其它相关文章!

(0)

相关推荐

  • python实现图像高斯金字塔的示例代码

    import cv2 import numpy as np import matplotlib.pyplot as plt # Grayscale def BGR2GRAY(img): # Grayscale gray = 0.2126 * img[..., 2] + 0.7152 * img[..., 1] + 0.0722 * img[..., 0] return gray # Bi-Linear interpolation def bl_interpolate(img, ax=1., ay

  • python计算机视觉opencv图像金字塔轮廓及模板匹配

    目录 1.图像金字塔 ①高斯金字塔 ②拉普拉斯金字塔 2.图像轮廓 ①寻找轮廓 ②轮廓特征 ③轮廓绘制 3.模板匹配 ①模板匹配 ②匹配框线绘制 ③多对象匹配 4.直方图统计 ①直方图绘制 ②直方图统计 ③直方图的mask操作 ④直方图均衡化 5.傅里叶变换 1.图像金字塔 ①高斯金字塔 向下采样,数据会越来越少,减少的方式是:将偶数行和列删除 向上采样,数据会越来越多,将图像在每个方向上扩大为原来的两倍,新增的行和列用0来填充.使用先前同样的内核与放大后的图像卷积,获得近似值. 上采样之后,图

  • python 用opencv实现图像修复和图像金字塔

    我们将学习如何通过一种称为修复的方法去除旧照片中的小噪音,笔画等.基本思路很简单:用相邻像素替换那些坏标记,使其看起来像邻域. cv2.inpaint() cv2.INPAINT_TELEA cv2.INPAINT_NS import numpy as np import cv2 as cv img = cv.imread('messi_2.jpg') mask = cv.imread('mask2.png',0) dst = cv.inpaint(img,mask,3,cv.INPAINT_T

  • Python图像处理之图像金字塔详解

    目录 一.图像金字塔原理 二.图像向上取样 三.图像向下取样 四.总结 一.图像金字塔原理 上一篇文章讲解的图像采样处理可以降低图像的大小,本文将补充图像金字塔知识,了解专门用于图像向上采样和向下采样的pyrUp()和pyrDown()函数. 图像金字塔是指由一组图像且不同分别率的子图集合,它是图像多尺度表达的一种,以多分辨率来解释图像的结构,主要用于图像的分割或压缩.一幅图像的金字塔是一系列以金字塔形状排列的分辨率逐步降低,且来源于同一张原始图的图像集合.如图10-1所示,它包括了四层图像,将

  • Python图像处理之边缘检测原理详解

    目录 原理 Sobel检测算子 Laplacian算子 算子比较 原理 边缘检测是图像处理和计算机视觉当中的基本问题,边缘检测的目的是标识数字图像中亮度变化明显的点,图像的边缘检测可以大幅度的减少数据量,并且剔除了可以认为不相关的信息,保留了图像重要的结构属性,它们绝大多数可以分为两类:基于搜索和基于零穿越. 基于搜索:通过寻找图像一阶导数中max来检测边界,然后利用计算结果估计边缘的局部方向,通常采用梯度的方向,并在此方向找到局部梯度模的最大值,代表的算法是Sobel算子和Scharr算子.

  • Python+OpenCV之图像梯度详解

    目录 1. Sobel算子 1.1 Sobel介绍 1.2 横向Sobel算子 1.3 纵向Sobel算子 1.4 合并横纵向的方法提取更好的边缘的结果 1.5 利用1.3方法绘制素描风格 2. Scharr算子 3. Laplacian算子 1. Sobel算子 OpenCV系列—本文底页有多个常用方法链接 1.1 Sobel介绍 cv2.Sobel(src, ddepth, dx, dy, ksize) ddepth:图像的深度 dx和dy分别表示水平和竖直方向 ksize是Sobel算子的

  • Python+OpenCV之图像轮廓详解

    目录 1. 图像轮廓 1.1 findContours介绍 1.2 绘制轮廓 1.3 轮廓特征 2. 轮廓近似 2.1 轮廓 2.2 边界矩形 2.3 外界多边形及面积 1. 图像轮廓 1.1 findContours介绍 cv2.findContours(img, mode, method) mode:轮廓检索模式 RETR_EXTERNAL :只检索最外面的轮廓: RETR_LIST:检索所有的轮廓,并将其保存到一条链表当中: RETR_CCOMP:检索所有的轮廓,并将他们组织为两层:顶层是

  • 玩转Python图像处理之二值图像腐蚀详解

    目录 1 引言 2 腐蚀概念 3 举个栗子 4 水平腐蚀 4.1 理论基础 4.2 代码实现 5 垂直腐蚀 5.1 理论基础 5.2 代码实现 6 全方向腐蚀 6.1 理论基础 6.2 代码实现 7 总结 1 引言 形态学运算是针对二值图像依据数学形态学集合论方法发展起来的图像处理的方法.其主要内容是设计一整套的变换概念和算法,用以描述图像的基本特征. 在图像处理中,形态学的应用主要有以下两点:利用形态学的基本运算,对图像进行观察和处理,从而达到改善图像质量的目的;描述和定义图像的各种几何参数和

  • Python图像处理之图像融合与ROI区域绘制详解

    目录 一.图像融合 二.图像ROI区域定位 三.图像属性 (1)shape (2)size (3)dtype 四.图像通道分离及合并 (1)split()函数 (2)merge()函数 五.图像类型转换 六.总结 一.图像融合 图像融合通常是指多张图像的信息进行融合,从而获得信息更丰富的结果,能够帮助人们观察或计算机处理.图5-1是将两张不清晰的图像融合得到更清晰的效果图. 图像融合是在图像加法的基础上增加了系数和亮度调节量,它与图像的主要区别如下[1-3]: 图像加法:目标图像 = 图像1 +

  • Python图像处理之图像量化处理详解

    目录 一.图像量化处理原理 二.图像量化实现 三.图像量化等级对比 四.K-Means聚类实现量化处理 五.总结 一.图像量化处理原理 量化(Quantization)旨在将图像像素点对应亮度的连续变化区间转换为单个特定值的过程,即将原始灰度图像的空间坐标幅度值离散化.量化等级越多,图像层次越丰富,灰度分辨率越高,图像的质量也越好:量化等级越少,图像层次欠丰富,灰度分辨率越低,会出现图像轮廓分层的现象,降低了图像的质量.图8-1是将图像的连续灰度值转换为0至255的灰度级的过程[1-3]. 如果

  • C++ OpenCV学习之图像金字塔与图像融合详解

    目录 1金字塔 2什么是图像金字塔? 3图像金字塔有什么用? 4OpenCV实战图像金字塔 1 金字塔 平时你听到.见到的金字塔是什么样的? 这样? 还是这样? 实际上除了这些,还有图像金字塔   图像金字塔有什么用?为什么要称作图像金字塔?本文带你研究这些问题. 2 什么是图像金字塔? 正如生物视觉系统会处理分层次的尺寸一样,计算机视觉系统实现多分辨率图像处理的基础是图像金字塔. 考虑这样一个场景:输入系统一幅图像来检测人脸.由于事先并不知道人脸在这张图片中可能的尺寸,所以需要根据输入生成一个

  • Python matplotlib画图时图例说明(legend)放到图像外侧详解

    用python的matplotlib画图时,往往需要加图例说明.如果不设置任何参数,默认是加到图像的内侧的最佳位置. import matplotlib.pyplot as plt import numpy as np x = np.arange(10) fig = plt.figure() ax = plt.subplot(111) for i in xrange(5): ax.plot(x, i * x, label='$y = %ix$' % i) plt.legend() plt.sho

随机推荐