python中matplotlib的颜色以及形状实例详解

目录
  • 绘制折线图
  • 绘制柱形图
  • 簇状柱形图
  • 堆积柱形图
  • 散点图
  • 附:matplotlib实现区域颜色填充
  • 总结

绘制折线图

命令形如:

# 常用
plt.plot(x, y, linewidth = '1', label = "test", color=' red ', linestyle=':', marker='|')

# 所有可选参数
plt.plot(x,y,color,linestyle=,linewidth,marker,markeredgecolor,markeredgwidth,markerfacecolor,markersize,label)

plt.legend(loc='upper left')
plt.show()

主要参数详解:

线条形式(linestyle):

标记字符 还可使用 说明
‘-’ “solid” 实线
‘–’ “dashed” 破折线
‘-.’ “dashdot” 点划线
‘:’ “dotted” 虚线
’ ’ ‘none’ 无线条

标注形状(marker):

标记字符 还可使用 说明
‘.’ point marker 点标记
‘,’ pixel marker 像素标记(极小点)
‘o’ circle marker 实心圈标记
‘v’ triangle_down marker 倒三角标记
‘^’ triangle_up marker 上三角标记
‘<’ triangle_left marker 左三角标记
‘>’ triangle_right marker 右三角标记
‘1’ tri_down marker 下花三角标记
‘2’ tri_up marker 上花三角标记
‘3’ tri_left marker 左花三角标记
‘4’ tri_right marker 右花三角标记
‘s’ square marker 实心方形标记
‘p’ pentagon marker 实心五角标记
‘*’ star marker 星形标记
‘h’ hexagon1 marker 竖六边形标记
‘H’ hexagon2 marker 横六边形标记
‘+’ plus marker 十字标记
‘x’ x marker x标记
‘D’ diamond marker 菱形标记
‘d’ thin_diamond marker 受菱形标记
‘|’ vline marker 垂直线标记
‘_’ hline marker 水平线标记

颜色(color),可用十六进制形式,每两个十六进制数分别代表R、G、B分量,可用如下代码展示所有:

import matplotlib
for name, hex in matplotlib.colors.cnames.items():
    print(name, hex)

得所有支持颜色:

 cnames = {
    'aliceblue':            '#F0F8FF',
    'antiquewhite':         '#FAEBD7',
    'aqua':                 '#00FFFF',
    'aquamarine':           '#7FFFD4',
    'azure':                '#F0FFFF',
    'beige':                '#F5F5DC',
    'bisque':               '#FFE4C4',
    'black':                '#000000',
    'blanchedalmond':       '#FFEBCD',
    'blue':                 '#0000FF',
    'blueviolet':           '#8A2BE2',
    'brown':                '#A52A2A',
    'burlywood':            '#DEB887',
    'cadetblue':            '#5F9EA0',
    'chartreuse':           '#7FFF00',
    'chocolate':            '#D2691E',
    'coral':                '#FF7F50',
    'cornflowerblue':       '#6495ED',
    'cornsilk':             '#FFF8DC',
    'crimson':              '#DC143C',
    'cyan':                 '#00FFFF',
    'darkblue':             '#00008B',
    'darkcyan':             '#008B8B',
    'darkgoldenrod':        '#B8860B',
    'darkgray':             '#A9A9A9',
    'darkgreen':            '#006400',
    'darkkhaki':            '#BDB76B',
    'darkmagenta':          '#8B008B',
    'darkolivegreen':       '#556B2F',
    'darkorange':           '#FF8C00',
    'darkorchid':           '#9932CC',
    'darkred':              '#8B0000',
    'darksalmon':           '#E9967A',
    'darkseagreen':         '#8FBC8F',
    'darkslateblue':        '#483D8B',
    'darkslategray':        '#2F4F4F',
    'darkturquoise':        '#00CED1',
    'darkviolet':           '#9400D3',
    'deeppink':             '#FF1493',
    'deepskyblue':          '#00BFFF',
    'dimgray':              '#696969',
    'dodgerblue':           '#1E90FF',
    'firebrick':            '#B22222',
    'floralwhite':          '#FFFAF0',
    'forestgreen':          '#228B22',
    'fuchsia':              '#FF00FF',
    'gainsboro':            '#DCDCDC',
    'ghostwhite':           '#F8F8FF',
    'gold':                 '#FFD700',
    'goldenrod':            '#DAA520',
    'gray':                 '#808080',
    'green':                '#008000',
    'greenyellow':          '#ADFF2F',
    'honeydew':             '#F0FFF0',
    'hotpink':              '#FF69B4',
    'indianred':            '#CD5C5C',
    'indigo':               '#4B0082',
    'ivory':                '#FFFFF0',
    'khaki':                '#F0E68C',
    'lavender':             '#E6E6FA',
    'lavenderblush':        '#FFF0F5',
    'lawngreen':            '#7CFC00',
    'lemonchiffon':         '#FFFACD',
    'lightblue':            '#ADD8E6',
    'lightcoral':           '#F08080',
    'lightcyan':            '#E0FFFF',
    'lightgoldenrodyellow': '#FAFAD2',
    'lightgreen':           '#90EE90',
    'lightgray':            '#D3D3D3',
    'lightpink':            '#FFB6C1',
    'lightsalmon':          '#FFA07A',
    'lightseagreen':        '#20B2AA',
    'lightskyblue':         '#87CEFA',
    'lightslategray':       '#778899',
    'lightsteelblue':       '#B0C4DE',
    'lightyellow':          '#FFFFE0',
    'lime':                 '#00FF00',
    'limegreen':            '#32CD32',
    'linen':                '#FAF0E6',
    'magenta':              '#FF00FF',
    'maroon':               '#800000',
    'mediumaquamarine':     '#66CDAA',
    'mediumblue':           '#0000CD',
    'mediumorchid':         '#BA55D3',
    'mediumpurple':         '#9370DB',
    'mediumseagreen':       '#3CB371',
    'mediumslateblue':      '#7B68EE',
    'mediumspringgreen':    '#00FA9A',
    'mediumturquoise':      '#48D1CC',
    'mediumvioletred':      '#C71585',
    'midnightblue':         '#191970',
    'mintcream':            '#F5FFFA',
    'mistyrose':            '#FFE4E1',
    'moccasin':             '#FFE4B5',
    'navajowhite':          '#FFDEAD',
    'navy':                 '#000080',
    'oldlace':              '#FDF5E6',
    'olive':                '#808000',
    'olivedrab':            '#6B8E23',
    'orange':               '#FFA500',
    'orangered':            '#FF4500',
    'orchid':               '#DA70D6',
    'palegoldenrod':        '#EEE8AA',
    'palegreen':            '#98FB98',
    'paleturquoise':        '#AFEEEE',
    'palevioletred':        '#DB7093',
    'papayawhip':           '#FFEFD5',
    'peachpuff':            '#FFDAB9',
    'peru':                 '#CD853F',
    'pink':                 '#FFC0CB',
    'plum':                 '#DDA0DD',
    'powderblue':           '#B0E0E6',
    'purple':               '#800080',
    'red':                  '#FF0000',
    'rosybrown':            '#BC8F8F',
    'royalblue':            '#4169E1',
    'saddlebrown':          '#8B4513',
    'salmon':               '#FA8072',
    'sandybrown':           '#FAA460',
    'seagreen':             '#2E8B57',
    'seashell':             '#FFF5EE',
    'sienna':               '#A0522D',
    'silver':               '#C0C0C0',
    'skyblue':              '#87CEEB',
    'slateblue':            '#6A5ACD',
    'slategray':            '#708090',
    'snow':                 '#FFFAFA',
    'springgreen':          '#00FF7F',
    'steelblue':            '#4682B4',
    'tan':                  '#D2B48C',
    'teal':                 '#008080',
    'thistle':              '#D8BFD8',
    'tomato':               '#FF6347',
    'turquoise':            '#40E0D0',
    'violet':               '#EE82EE',
    'wheat':                '#F5DEB3',
    'white':                '#FFFFFF',
    'whitesmoke':           '#F5F5F5',
    'yellow':               '#FFFF00',
    'yellowgreen':          '#9ACD32'}

可用如下代码展示具体颜色:

import matplotlib.pyplot as plt
import matplotlib.patches as patches
import matplotlib.colors as colors
import math

fig = plt.figure()
ax = fig.add_subplot(111)

ratio = 1.0 / 3.0
count = math.ceil(math.sqrt(len(colors.cnames)))
x_count = count * ratio
y_count = count / ratio
x = 0
y = 0
w = 1 / x_count
h = 1 / y_count

for c in colors.cnames:
    pos = (x / x_count, y / y_count)
    ax.add_patch(patches.Rectangle(pos, w, h, color=c))
    ax.annotate(c, xy=pos)
    if y >= y_count-1:
        x += 1
        y = 0
    else:
        y += 1

plt.show()

得下图

绘制柱形图

plot.bar(x,height,width=0.8,bottom=None,align='center',color,edgecolor)
参数 说明
x 表示在什么位置显示柱形图
height 柱子高度
width 每根柱子的宽度,可各不相同
bottom 每根柱子的底部位置,可各不相同
align 柱子的位置与x值的关系,可选center、edge两个参数,center表示柱子位于x值的中心位置,edge表示边缘位置
color 柱子颜色
edgecolor 柱子边缘的颜色

例:

plt.subplot(1,1,1)

x = np.array(["东区","西区","南区","北区"])
y = np.array([8566,6482,5335,7310])

plt.bar(x,y,width=0.5,align="center",label="任务量")

plt.title("全国各分区任务量",loc="center")

# 添加数据标签
for a,b in zip(x,y):
    plt.text(a,b,b,ha='center',va="bottom",fontsize=12,color="r")

plt.xlabel('分区')
plt.ylabel('任务量')

plt.legend()     #显示图例

#保存到本地
#plt.savefig("C:/Users/.../1.jpg")

簇状柱形图

plt.subplot(1,1,1)

x = np.array([1,2,3,4])
y1 = np.array([8566,6482,5335,7310])
y2 = np.array([4283,2667,3655,3241])

plt.bar(x,y1,width=0.3,label="任务量")
plt.bar(x+0.3,y2,width=0.3,label="完成量")   #x+0.3相当于完成量的每个柱子右移0.3

plt.title("全国各分区任务量",loc="center")

# 添加数据标签
for a,b in zip(x,y1):
    plt.text(a,b,b,ha='center',va="bottom",fontsize=12,color="blue")

for a,b in zip(x,y2):
    plt.text(a,b,b,ha='center',va="bottom",fontsize=12,color="g")

plt.xlabel('区域')
plt.ylabel('任务情况')

#设置x轴刻度值
plt.xticks(x+0.15,["东区","西区","南区","北区"])

plt.grid(False)
plt.legend()     #显示图例

堆积柱形图

plt.subplot(1,1,1)

x = np.array(["东区","西区","南区","北区"])
y1 = np.array([8566,6482,5335,7310])
y2 = np.array([4283,2667,3655,3241])

plt.bar(x,y1,width=0.3,label="任务量")
plt.bar(x,y2,width=0.3,label="完成量")   

plt.title("全国各分区任务量",loc="center")

# 添加数据标签
for a,b in zip(x,y1):
    plt.text(a,b,b,ha='center',va="bottom",fontsize=12,color="blue")

for a,b in zip(x,y2):
    plt.text(a,b,b,ha='center',va="bottom",fontsize=12,color="g")

plt.xlabel('区域')
plt.ylabel('任务情况')

plt.grid(False)

plt.legend(loc = "upper center",ncol=2)

散点图

plt.scatter(x,y,s,c,marker,linewidths,edgecolors)
参数 说明
(x,y) 散点的位置
s 每个点的面积,即散点的大小。若只有一个具体值时,则所有点的大小都一样。也可呈现多个值,这样就成了气泡图
c 每个点的颜色,可多样
marker 标记,同折线图中marker
linewidths 散点线宽
edgecolors 散点外轮廓的颜色
colors = y*10
area = y*100        #根据y值的大小生成不同形状

plt.scatter(x,y,c=colors,marker="o",s=area)

plt.title("销量关系图",loc="center")

# 添加数据标签
for a,b in zip(x,y):
    plt.text(a,b,b,ha='center',va="center",fontsize=10,color="white")

plt.xlabel('气温')
plt.ylabel('啤酒销量')

plt.grid(False)

附:matplotlib实现区域颜色填充

'''
学习python
'''
import matplotlib.pyplot as plt
import numpy as np

x= np.linspace(0,5*np.pi, 1000)

y1 = np.sin(x)
y2 = np.sin(2*x)

#plt.plot(x,y1)
#plt.plot(x,y2)

plt.fill(x,y1,'b',alpha=0.5)
plt.fill(x,y2,'r',alpha=0.3)

plt.fill_between(x,y1,y2,facecolor='green')
plt.grid(True)

plt.show()

#########################################################
plt.plot(x,y1,'b',alpha=0.5)
plt.plot(x,y2,'r',alpha=0.3)
#添加条件
#如果数据点比较少的情况下,会有缝隙出现,使用interpolate可以填充缝隙
plt.fill_between(x,y1,y2,where=y1>=y2,facecolor='green',interpolate=True)
plt.fill_between(x,y1,y2,where=y2>y1,facecolor='yellow',interpolate=True)
plt.grid(True)

plt.show()
###########################################################

n = 256
X = np.linspace(-np.pi, np.pi, n, endpoint=True)
Y = np.sin(2 * X)

plt.plot(X, Y + 1, color='blue', alpha=1.00)
plt.fill_between(X, 1, Y + 1, color='blue', alpha=.25)

plt.plot(X, Y - 1, color='blue', alpha=1.00)
plt.fill_between(X, -1, Y - 1, (Y - 1) > -1, color='blue', alpha=.25)
plt.fill_between(X, -1, Y - 1, (Y - 1) < -1, color='red', alpha=.25)

plt.xlim(-np.pi, np.pi)
plt.xticks(())
plt.ylim(-2.5, 2.5)
plt.yticks(())

总结

到此这篇关于python中matplotlib的颜色以及形状的文章就介绍到这了,更多相关python matplotlib颜色及形状内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • python matplotlib:plt.scatter() 大小和颜色参数详解

    语法 plt.scatter(x, y, s=20, c='b') 大小s默认为20,s=0时点不显示:颜色c默认为蓝色. 为每一个点指定大小和颜色 有时我们需要为每一个点指定大小和方向,以区分不同的点.这时,可以向s和c传入列表.如: import matplotlib.pyplot as plt import numpy as np x = list(range(1, 7)) plt.scatter(x, x, s=10*np.array(x)**2, c=x) plt.show() 参数s

  • Python的matplotlib绘图如何修改背景颜色的实现

    在主图中背景颜色不知道怎么改,plt.plot()中没有axisbg参数. 但是子图可以对plt.subplot的参数做修改,下面是对子图的背景颜色修改代码 import matplotlib.pyplot as plt import numpy as np # Fixing random state for reproducibility np.random.seed(19680801) dt = 0.01 t = np.arange(0, 30, dt) nse1 = np.random.r

  • python可视化 matplotlib画图使用colorbar工具自定义颜色

    python matplotlib画图使用colorbar工具自定义颜色 colorbar(draw colorbar without any mapple/plot) 自定义colorbar可以画出任何自己想要的colorbar,自由自在.不受约束,不依赖于任何已有的图(plot/mappable).这里使用的是mpl.colorbar.ColorbarBase类,而colorbar类必须依赖于已有的图. 参数可以参考下面的描述->matplotlib: class matplotlib.co

  • python中matplotlib条件背景颜色的实现

    如何根据图表中没有的变量更改折线图的背景颜色?例如,如果我有以下数据帧: import numpy as np import pandas as pd dates = pd.date_range('20000101', periods=800) df = pd.DataFrame(index=dates) df['A'] = np.cumsum(np.random.randn(800)) df['B'] = np.random.randint(-1,2,size=800) 如果我做df.A的折线

  • python中matplotlib的颜色及线条控制的示例

    下次用python画图的时候选色选点都可以直接参考这边,牛逼!分享给大家,也给自己留个笔记. 参考网址: http://stackoverflow.com/questions/22408237/named-colors-in-matplotlib http://stackoverflow.com/questions/8409095/matplotlib-set-markers-for-individual-points-on-a-line 第二个参考网址给出了linestyle可选参数: '-'

  • Python+matplotlib绘制不同大小和颜色散点图实例

     具有不同标记颜色和大小的散点图演示. 演示结果: 实现代码: import numpy as np import matplotlib.pyplot as plt import matplotlib.cbook as cbook # Load a numpy record array from yahoo csv data with fields date, open, close, # volume, adj_close from the mpl-data/example directory

  • python中matplotlib的颜色以及形状实例详解

    目录 绘制折线图 绘制柱形图 簇状柱形图 堆积柱形图 散点图 附:matplotlib实现区域颜色填充 总结 绘制折线图 命令形如: # 常用 plt.plot(x, y, linewidth = '1', label = "test", color=' red ', linestyle=':', marker='|') # 所有可选参数 plt.plot(x,y,color,linestyle=,linewidth,marker,markeredgecolor,markeredgwi

  • python中 chr unichr ord函数的实例详解

    python中 chr unichr ord函数的实例详解 chr()函数用一个范围在range(256)内的(就是0-255)整数作参数,返回一个对应的字符.unichr()跟它一样,只不过返回的是Unicode字符,这个从Python 2.0才加入的unichr()的参数范围依赖于你的python是如何被编译的.如果是配置为USC2的Unicode,那么它的允许范围就是range(65536)或0x0000-0xFFFF:如果配置为UCS4,那么这个值应该是range(1114112)或0x

  • 对python中if语句的真假判断实例详解

    说明 在python中,if作为条件语句,当if后面的条件参数为真时,则执行后面的语句块,反之跳过,为了深入理解if语句,我们需要知道if语句的真假判断方式. 示例 在python交互器中,经过测试发现以下条件均为假,相当于False In [2]: if '': ...: print('ok') ...: In [3]: if 0: ...: print('ok') ...: In [4]: if None: ...: print('ok') ...: In [5]: if []: ...:

  • 对python中GUI,Label和Button的实例详解

    如下所示: #coding=utf-8 import Tkinter top=Tkinter.Tk() #400x300:代表初始化时主窗口的大小,300,100分别代表窗口的初始化位置 #x:为小写的x top.geometry('400x300+300+100') #创建一个文本框,里面内容为"hello world" lab=Tkinter.Label(top,text='hello world') #布局方式 lab.pack() #创建一个按钮 button=Tkinter.

  • Python中常用的高阶函数实例详解

    前言 高阶函数指的是能接收函数作为参数的函数或类:python中有一些内置的高阶函数,在某些场合使用可以提高代码的效率. lambda 当在使用一些函数的时候,我们不需要显式定义函数名称,直接传入lambda匿名函数即可.lambda匿名函数通常和其他函数搭配使用. 比如可以直接使用如下的lambda表达式计算当x=3时,y = x * 3 + 5的函数值. In [1]: (lambda x: x * 3 + 5)(3) Out[1]: 14 map map函数将一个函数和序列/迭代器(可以传

  • 如何彻底解决Python中matplotlib不显示中文的问题详解(显示方框)

    目录 前言 方法一: 方法二: 总结 前言 在很长一段时间里用Python绘图,matplotlib都不能很好的显示中文,起初是认为我的pycharm里的设置问题,但是发现同样的问题在spyder里也同样的出现了,虽然有的地方可以用英文实在不行用拼音...但是在作图这里没有中文真的是太不方便了,机缘巧合下在年前终于找到问题的根源了,于是乎爱刨根问底儿的我把整个过程的解决方法分享给大家~~ 一共有两种解决方案,我强烈推荐第一种,因为更为方便,绘图时不用再写别的参数,调用一次即可,第二种方法也会写出

  • python中matplotlib实现最小二乘法拟合的过程详解

    前言 最小二乘法Least Square Method,做为分类回归算法的基础,有着悠久的历史(由马里·勒让德于1806年提出).它通过最小化误差的平方和寻找数据的最佳函数匹配.利用最小二乘法可以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和为最小.最小二乘法还可用于曲线拟合.其他一些优化问题也可通过最小化能量或最大化熵用最小二乘法来表达. 下面这篇文章主要跟大家介绍了关于python中matplotlib实现最小二乘法拟合的相关内容,下面话不多说,来一起看看详细的介绍:

  • 利用Python中unittest实现简单的单元测试实例详解

    前言 单元测试的重要性就不多说了,可恶的是Python中有太多的单元测试框架和工具,什么unittest, testtools, subunit, coverage, testrepository, nose, mox, mock, fixtures, discover,再加上setuptools, distutils等等这些,先不说如何写单元测试,光是怎么运行单元测试就有N多种方法,再因为它是测试而非功能,是很多人没兴趣触及的东西.但是作为一个优秀的程序员,不仅要写好功能代码,写好测试代码一样

  • Python中sys模块功能与用法实例详解

    本文实例讲述了Python中sys模块功能与用法.分享给大家供大家参考,具体如下: sys-系统特定的参数和功能 该模块提供对解释器使用或维护的一些变量的访问,以及与解释器强烈交互的函数.它始终可用. sys.argv 传递给Python脚本的命令行参数列表.argv[0]是脚本名称(依赖于操作系统,无论这是否是完整路径名).如果使用-c解释器的命令行选项执行命令,argv[0]则将其设置为字符串'-c'.如果没有脚本名称传递给Python解释器,argv[0]则为空字符串. 要循环标准输入或命

  • Python中类型关系和继承关系实例详解

    本文详细介绍了Python中类型关系和继承关系.分享给大家供大家参考.具体分析如下: 如果一个对象A持有另一个对象B的ID,那么检索到A之后就可以检索到B,我们就说存在一个A到B的导航.这种导航关系使得Python中所有对象之间形成了一个复杂的网络结构. Python程序的运行包括: 1. 修改这个网络结构: 2. 执行有副作用的代码对象(code object或者说bytecode,见Python Language Reference 3.2) (副作用是指影响Python虚拟机之外的设备,这

随机推荐