Python基于链接表实现无向图最短路径搜索

目录
  • 前言
  • 1. 链接表
  • 2. 最短路径算法
    • 2.1 无向图最短路径算法
  • 3. 总结

前言

图的常用存储方式有 2 种:

  • 邻接炬阵
  • 链接表

邻接炬阵的优点和缺点都很明显。优点是简单、易理解,对于大部分图结构而言,都是稀疏的,使用炬阵存储空间浪费就较大。

链接表的存储相比较邻接炬阵,使用起来更方便,对于空间的使用是刚好够用原则,不会产生太多空间浪费。操作起来,也是简单。

本文将以链接表方式存储图结构,在此基础上实现无向图最短路径搜索。

1. 链接表

链接表的存储思路:

使用链接表实现图的存储时,有主表子表概念。

  • 主表: 用来存储图对象中的所有顶点数据。
  • 子表: 每一个顶点自身会维护一个子表,用来存储与其相邻的所有顶点数据。

如下图结构中有 5 个顶点,使用链接表保存时,会有主表 1 张,子表 5 张。链接表的优点是能够紧凑地表示稀疏图。

在 Python 中可以使用列表嵌套实现链接表,这应该是最简单的表达方式。

g = [
    ['A0', [('B1', 3), ('D3', 5)]],
    ['B1', [('C2', 4)]],
    ['C2', [('D3', 6), ('E4', 1)]],
    ['D3', [('E4', 2)]],
    ['E4', [('B1', 7)]],
]

在此基础上,可以做一些简单的常规操作。

查询所有顶点:

for node in g:
    print(node[0],end=' ')

查询顶点及其相邻顶点

for node in g:
    print('-------------------')
    print(node[0], ":", end='')
    edges = node[1]
    for e in edges:
        v, w = e
        print(v, w, end=';')
    print()

当顶点和相邻顶点之间的关系很复杂时,这种层层嵌套的存储格式会让人眼花缭乱。即使要使用这种嵌套方式,那也应该选择 Python 中的字典类型,对于查询会方便很多。

g = {
    'A0':{'B1': 3, 'D3': 5},
    'B1': {'C2': 4},
    'C2': {'D3': 6, 'E4': 1},
    'D3': {'E4':2},
    'E4': {'B1': 7}
}

如上结构,在查询时,无论是方便性还是性能,都要强于完全的列表方案。

查询所有顶点:

for node in g.keys():
    print(node,end=" ")

查询与某一顶点相邻的顶点时,只需要提供顶点名称就可以了。

print("查询与 A0 项点有连接的其它顶点")
for k, v in g.get('A0').items():
    print((k, v), end=";")

以上的存储方案,适合于演示,并不适合于开发环境,因顶点本身是具有特定的数据含义(如,可能是城市、公交车站、网址、路由器……),且以上存储方案让顶点和其相邻顶点的信息过度耦合,在实际运用时,会牵一发而动全身。

也许一个微不足道的修改,会波动到整个结构的更新。

所以,有必要引于 OOP 设计理念,让顶点和图有各自特定数据结构,通过 2 种类类型可以更好地体现图是顶点的集合,顶点和顶点之间的多对多关系。

项点类:

class Vertex:
    def __init__(self, name, v_id=0):
        # 顶点的编号
        self.v_id = v_id
        # 顶点的名称
        self.v_name = name
        # 是否被访问过:False 没有 True:有
        self.visited = False
        # 与此顶点相连接的其它顶点
        self.connected_to = {}

顶点类结构说明:

  • visited:用于搜索路径算法中,检查节点是否已经被搜索过。
  • connected_to:存储与项点相邻的顶点信息。这里使用了字典,以顶点为键,权重为值。

图类:

class Graph:

    def __init__(self):
        # 一维列表,保存节点
        self.vert_list = {}
        # 顶点个数
        self.v_nums = 0
        # 使用队列模拟队列或栈,用于路径搜索算法
        self.queue_stack = []
        # 保存搜索到的路径
        self.searchPath = []

图类结构说明:

queue_stack:使用队列模拟栈或队列。用于路径搜索过程中保存临时数据。

怎么使用列表模拟队列或栈?

列表有 append()pop() 2 个很价值的方法。

append() 用来向列表中添加数据,且每次都是从列表最后面添加。

pop() 默认从列表最后面删除且弹出数据, pop(参数) 可以提供索引值用来从指定位置删除且弹出数据。

使用 append() 和 pop() 方法就能模拟栈,从同一个地方进出数据。

使用 append() 和 pop(0) 方法就能模拟队列,从后面添加数据,从最前面获取数据

searchPath:用于保存搜索到的路径数据。

2. 最短路径算法

从图结构可知,从一个顶点到达另一个顶点,可不止一条可行路径,在众多路径我们总是试图选择一条最短路径,当然,需求不同,衡量一个路径是不是最短路径的标准也会不同。

如打开导航系统后,最短路径可能是费用最少的那条,可能是速度最快的那条,也可能是量程数最少的或者是红绿灯是最少的……

在无向图中,以经过的边数最少的路径为最短路径。

在有向加权图中,会以附加在每条边上的权重的数据含义来衡量。权重可以是时间、速度、量程数……

2.1 无向图最短路径算法

查找无向图中任意两个顶点间的最短路径长度,可以直接使用广度搜索算法。如下图求解 A0 ~ F5 的最短路径。

Tips: 无向图中任意 2 个顶点间的最短路径长度由边数决定。

广度优先搜索算法流程:

广度优先搜索算法的基本原则:以某一顶点为参考点,先搜索离此顶点最近的顶点,再搜索离最近顶点最近的顶点……以此类推,一层一层向目标顶点推进。

如从顶点 A0 找到顶点 F5。先从离 A0 最近的顶点 B1D3 找起,如果没找到,再找离 B1D3 最近的顶点 C2E4,如果还是没有找到,再找离 C2E4 最近的顶点 F5

因为每一次搜索都是采用最近原则,最后搜索到的目标也一定是最近的路径。

也因为采用最近原则,所以搜索过程中,在搜索过程中所经历到的每一个顶点的路径都是最短路径。最近+最近,结果必然还是最近。

显然,广度优先搜索的最近搜索原则是符合先进先出思想的,具体算法实施时可以借助队列实现整个过程。

算法流程:

1.先确定起始点 A0

2.找到 A0 的 2 个后序顶点 B1 、D3 (或者说 B1、D3的前序顶点是 A0),压入队列中。除去起点 A0B1D3 顶点属于第一近压入队列的节点。

  • B1 和 D3 压入队列的顺序并不影响 A0 ~B1 或 A0 ~ D3 的路径距离(都是 1)。
  • A0~B1 的最短路径长度为 1
  • A0~D3 的最短路径长度为 1

3.从队列中搜索 B1 时,找到 B1 的后序顶点 C2 并压入队列。B1 是 C2 的前序顶点。

B1 ~ C2 的最短路径长度为 1,而又因为 A0~B1 的最短路径长度为 1 ,所以 A0 ~ C2 的最短路径为 2

4.B1 搜索完毕后,在队列中搜索 B3 时,找到 B3 的后序顶点 E4 ,压入队列。因 B1 和 D3 属于第一近顶点,所以这 2 个顶点的后序顶点 C2E4 属于第二近压入队列,或说 A0-B1-C2A0-D3-E4 的路径距离是相同的(都为 2)。

5.当搜索到 C2 时,没有后序顶点,此时队列没有压入操作。

6.当 搜索到 E4 时,E4 有 2 个后序顶点 C2F5,因 C2 已经压入过,所以仅压入 F5。因 F5 是由第二近顶点压入,所以 F5 是属于第三近压入顶点。

A0-D3-E4-F5 的路径为 3。

编码实现广度优先算法:

在顶点类中添加如下几个方法:

class Vertex:
    def __init__(self, v_name, v_id=0):
        # 顶点的编号
        self.v_id = v_id
        # 顶点的名称
        self.v_name = v_name
        # 是否被访问过:False 没有 True:有
        self.visited = False
        # 与此顶点相连接的其它顶点
        self.connected_to = {}

    '''
    添加邻接顶点
    nbr_ver:相邻顶点
    weight:无向无权重图,权重默认设置为 1
    '''
    def add_neighbor(self, nbr_ver, weight=1):
        # 以相邻顶点为键,权重为值
        self.connected_to[nbr_ver] = weight

    '''
    显示与当前顶点相邻的顶点
    '''
    def __str__(self):
        return '与 {0} 顶点相邻的顶点有:{1}'.format(self.v_name,
                                           str([(key.v_name, val) for key, val in self.connected_to.items()]))

    '''
    得到相邻顶点的权重
    '''
    def get_weight(self, nbr_v):
        return self.connected_to[nbr_v]

    '''
    判断给定的顶点是否和当前顶点相邻
    '''
    def is_neighbor(self, nbr_v):
        return nbr_v in self.connected_to

顶点类用来构造一个新顶点,并维护与相邻顶点的关系。

对图类中的方法做一下详细解释:

初始化方法:

class Graph:
    def __init__(self):
        # 一维列表,保存节点
        self.vert_list = {}
        # 顶点个数
        self.v_nums = 0
        # 使用队列模拟队列或栈,用于路径搜索算法
        self.queue_stack = []
        # 保存搜索到的路径
        self.searchPath = []

为图添加新顶点方法:

   def add_vertex(self, vert):
        if vert.v_name in self.vert_list:
            # 已经存在
            return
        # 顶点的编号内部生成
        vert.v_id = self.v_nums
        # 所有顶点保存在图所维护的字典中,以顶点名为键,顶点对象为值
        self.vert_list[vert.v_name] = vert
        # 数量增一
        self.v_nums += 1

顶点的编号由图对象内部指定,便于统一管理。

所有顶点保存在一个字典中,以顶点名称为键,顶点对象为值。也可以使用列表直接保存顶点,根据需要决定。

提供一个根据顶点名称返回顶点的方法:

 	'''
    根据顶点名找到顶点对象
    '''
    def find_vertex(self, v_name):
        if v_name in self.vert_list:
            return self.vert_list.get(v_name)
    # 查询所有顶点
    def find_vertexes(self):
        return [str(ver) for ver in self.vert_list.values()]

添加顶点与相邻顶点的关系:此方法属于一个封装方法,本质是调用顶点自身的添加相邻顶点方法。

    '''
    添加节点与节点之间的关系(边),
    如果是无权重图,统一设定为 1
    '''
    def add_edge(self, from_v, to_v, weight=1):
        # 如果节点不存在
        if from_v not in self.vert_list:
            self.add_vertex(from_v)
        if to_v not in self.vert_list:
            self.add_vertex(to_v)
        from_v.add_neighbor(to_v, weight)

图中核心方法:用来广度优先搜索算法查找顶点与顶点之间的路径

    '''
    广度优先搜索
    '''
    def bfs_nearest_path(self, from_v, to_v):
        tmp_path = []
        tmp_path.append(from_v)
        # 起始顶点不用压入队列
        from_v.visited = True
        # from_v 顶点的相邻顶点压入队列
        self.push_queue(from_v)
        while len(self.queue_stack) != 0:
            # 从队列中获取顶点
            v_ = self.queue_stack.pop(0)
            if from_v.is_neighbor(v_):
                # 如果 v_ 是 from_v 的后序相邻顶点,则连接成一条中路径信息
                tmp_path.append(v_)
                # 添加路径信息
                self.searchPath.append(tmp_path)
                tmp_path = tmp_path.copy()
                tmp_path.pop()
            else:
                for path_ in self.searchPath:
                    tmp_path = path_.copy()
                    tmp = tmp_path[len(tmp_path) - 1]
                    if tmp.is_neighbor(v_):
                        tmp_path.append(v_)
                        self.searchPath.append(tmp_path)
            if v_.v_id == to_v.v_id:
                break
            else:
                self.push_queue(v_)

    '''
     把某一顶点的相邻顶点压入队列
     '''
    def push_queue(self, vertex):
        # 获取 vertex 顶点的相邻顶点
        for v_ in vertex.connected_to.keys():
            # 检查此顶点是否压入过
            if v_.visited:
                continue
            vertex.visited = True
            self.queue_stack.append(v_)

广度优先搜索算法有一个核心点,当搜索到某一个顶点后,需要找到与此顶点相邻的其它顶点,并压入队列中。push_queue() 方法就是做些事情的。如果某一个顶点曾经进过队列,就不要再重复压入队列了。

测试代码:

'''
测试无向图最短路径
'''

if __name__ == '__main__':
    # 初始化图
    graph = Graph()
    # 添加节点
    for v_name in ['A', 'B', 'C', 'D', 'E', 'F']:
        v = Vertex(v_name)
        graph.add_vertex(v)

    # 添加顶点之间关系
    v_to_v = [('A', 'B'), ('A', 'D'), ('B', 'C'), ('C', 'E'), ('D', 'E'), ('E', 'F')]
    # 无向图中每 2 个相邻顶点之间互为关系
    for v in v_to_v:
        f_v = graph.find_vertex(v[0])
        t_v = graph.find_vertex(v[1])
        graph.add_edge(f_v, t_v)
        graph.add_edge(t_v, f_v)

    # 输出所有顶点
    print('-----------顶点及顶点之间的关系-------------')
    for v in graph.find_vertexes():
        print(v)

    # 查找路径
    print('-------------广度优先搜索--------------------')
    # 起始点
    f_v = graph.find_vertex('A')
    # 目标点
    t_v = graph.find_vertex('F')
    # 广度优先搜索
    graph.bfs_nearest_path(f_v, t_v)
    for path in graph.searchPath:
        weight = 0
        for idx in range(len(path)):
            if idx != len(path) - 1:
                weight += path[idx].get_weight(path[idx + 1])
            print(path[idx].v_name, end='-')
        print("的最短路径长度,", weight)

输出结果:

-----------顶点及顶点之间的关系-------------
与 A 顶点相邻的顶点有:[('B', 1), ('D', 1)]
与 B 顶点相邻的顶点有:[('A', 1), ('C', 1)]
与 C 顶点相邻的顶点有:[('B', 1), ('E', 1)]
与 D 顶点相邻的顶点有:[('A', 1), ('E', 1)]
与 E 顶点相邻的顶点有:[('C', 1), ('D', 1), ('F', 1)]
与 F 顶点相邻的顶点有:[('E', 1)]
-------------广度优先搜索--------------------
A-B-的最短路径长度, 1
A-D-的最短路径长度, 1
A-B-C-的最短路径长度, 2
A-D-E-的最短路径长度, 2
A-B-C-E-的最短路径长度, 3
A-D-E-的最短路径长度, 2
A-B-C-E-的最短路径长度, 3
A-D-E-F-的最短路径长度, 3
A-B-C-E-F-的最短路径长度, 4
A-D-E-F-的最短路径长度, 3
A-B-C-E-F-的最短路径长度, 4

广度优先搜索算法也可以使用递归方案:

    '''
    递归实现
    '''

    def bfs_nearest_path_dg(self, from_v, to_v):

        # 相邻顶点
        self.push_queue(from_v)
        tmp_v = self.queue_stack.pop(0)
        if not tmp_v.visited:
            self.searchPath.append(tmp_v)
        if tmp_v.v_id == to_v.v_id:
            return

        self.bfs_nearest_path_dg(tmp_v, to_v)

在无向图中,查找起始点到目标点的最短路径,使用广度优先搜索算法便可实现,但如果是有向加权图,可能不会称心如愿。因有向加权图中的边是有权重的。所以对于有向加权图则需要另择方案。

3. 总结

图数据结构的实现过程中会涉及到其它数据结构的运用。学习、使用图数据结构对其它数据结构有重新认识和巩固作用。

以上就是Python基于链接表实现无向图最短路径搜索的详细内容,更多关于Python无向图最短路径搜索的资料请关注我们其它相关文章!

(0)

相关推荐

  • python判断无向图环是否存在的示例

    暂时是一个手动设置无向图中的边,用一个二维数组表示,后面会改进为用户自己定义无向图的边. 学习python的新手,若大佬有解决的办法,希望不吝赐教 #无向图判断环是否存在 def dfs(u,fa): for i in range(v): n=g[u][i]#n为图中的顶点数 # print(u,n,fa,i,'') if n in vertex:#判断n是否属于图的顶点 if n==fa: continue if visit[n]==0: visit[n]=1 if dfs(n,u)==1:

  • python计算无向图节点度的实例代码

    废话不多说了,直接上代码吧: #Copyright (c)2017, 东北大学软件学院学生 # All rightsreserved #文件名称:a.py # 作 者:孔云 #问题描述:统计图中的每个节点的度,并生成度序列 #问题分析:利用networkx.代码如下: import networkx as nx G=nx.random_graphs.barabasi_albert_graph(1000,3)#生成n=1000,m=3的无标度的图 print ("某个节点的度:",G.d

  • python绘制无向图度分布曲线示例

    如下所示: #Copyright (c)2017, 东北大学软件学院学生 # All rightsreserved #文件名称:a.py # 作 者:孔云 #问题描述:统计图中的每个节点的度,并生成度序列 #问题分析:利用networkx.代码如下: import matplotlib.pyplot as plt #导入科学绘图包 import networkx as nx G=nx.random_graphs.barabasi_albert_graph(1000,3)#生成n=1000,m=3

  • Python根据已知邻接矩阵绘制无向图操作示例

    本文实例讲述了Python根据已知邻接矩阵绘制无向图操作.分享给大家供大家参考,具体如下: 有六个点:[0,1,2,3,4,5,6],六个点之间的邻接矩阵如表格所示,根据邻接矩阵绘制出相对应的图 0 1 2 3 4 5 6 0 0 1 0 1 0 1 0 1 1 0 1 1 1 1 1 2 0 1 0 1 0 1 0 3 1 1 1 0 1 1 1 4 0 1 0 1 1 1 1 5 1 1 1 1 1 0 0 6 0 1 0 1 1 0 0 将点之间的联系构造成如下矩阵 N = [[0, 3,

  • Python基于链接表实现无向图最短路径搜索

    目录 前言 1. 链接表 2. 最短路径算法 2.1 无向图最短路径算法 3. 总结 前言 图的常用存储方式有 2 种: 邻接炬阵 链接表 邻接炬阵的优点和缺点都很明显.优点是简单.易理解,对于大部分图结构而言,都是稀疏的,使用炬阵存储空间浪费就较大. 链接表的存储相比较邻接炬阵,使用起来更方便,对于空间的使用是刚好够用原则,不会产生太多空间浪费.操作起来,也是简单. 本文将以链接表方式存储图结构,在此基础上实现无向图最短路径搜索. 1. 链接表 链接表的存储思路: 使用链接表实现图的存储时,有

  • Python基于回溯法子集树模板解决旅行商问题(TSP)实例

    本文实例讲述了Python基于回溯法子集树模板解决旅行商问题(TSP).分享给大家供大家参考,具体如下: 问题 旅行商问题(Traveling Salesman Problem,TSP)是旅行商要到若干个城市旅行,各城市之间的费用是已知的,为了节省费用,旅行商决定从所在城市出发,到每个城市旅行一次后返回初始城市,问他应选择什么样的路线才能使所走的总费用最短? 分析 此问题可描述如下:G=(V,E)是带权的有向图,找到包含V中每个结点一个有向环,亦即一条周游路线,使得这个有向环上所有边成本之和最小

  • python基于搜索引擎实现文章查重功能

    前言 文章抄袭在互联网中普遍存在,很多博主都收受其烦.近几年随着互联网的发展,抄袭等不道德行为在互联网上愈演愈烈,甚至复制.黏贴后发布标原创屡见不鲜,部分抄袭后的文章甚至标记了一些联系方式从而使读者获取源码等资料.这种恶劣的行为使人愤慨. 本文使用搜索引擎结果作为文章库,再与本地或互联网上数据做相似度对比,实现文章查重:由于查重的实现过程与一般情况下的微博情感分析实现流程相似,从而轻易的扩展出情感分析功能(下一篇将在此篇代码的基础上完成数据采集.清洗到情感分析的整个过程). 由于近期时间上并不充

  • Python基于time模块求程序运行时间的方法

    本文实例讲述了Python基于time模块求程序运行时间的方法.分享给大家供大家参考,具体如下: 要记录程序的运行时间可以利用Unix系统中,1970.1.1到现在的时间的毫秒数,这个时间戳轻松完成. 方法是程序开始的时候取一次存入一个变量,在程序结束之后取一次再存入一个变量,与程序开始的时间戳相减则可以求出. Python中取这个时间戳的方法为引入time类之后,使用time.time();就能够拿出来.也就是Java中的System.currentTimeMillis(). 由于Python

  • Python基于回溯法子集树模板实现8皇后问题

    本文实例讲述了Python基于回溯法子集树模板实现8皇后问题.分享给大家供大家参考,具体如下: 问题 8×8格的国际象棋上摆放八个皇后,使其不能互相攻击,即任意两个皇后都不能处于同一行.同一列或同一斜线上,问有多少种摆法. 分析 为了简化问题,考虑到8个皇后不同行,则每一行放置一个皇后,每一行的皇后可以放置于第0.1.2.....7列,我们认为每一行的皇后有8种状态.那么,我们只要套用子集树模板,从第0行开始,自上而下,对每一行的皇后,遍历它的8个状态即可. 代码: ''' 8皇后问题 '''

  • Python基于list的append和pop方法实现堆栈与队列功能示例

    本文实例讲述了Python基于list的append和pop方法实现堆栈与队列功能.分享给大家供大家参考,具体如下: #coding=utf8 ''''' 堆栈: 堆栈是一个后进先出(LIFO)的数据结构. 在栈上"push"元素是个常用术语,意思是把一个对象添加到堆栈中. 删除一个元素,可以把它"pop"出堆栈. 队列: 队列是一种先进先出(FIFO)的数据类型. 新的元素通过"入队"的方式添加进队列的末尾, "出对"就是从

  • Python基于Tkinter的HelloWorld入门实例

    本文实例讲述了Python基于Tkinter的HelloWorld入门实例.分享给大家供大家参考.具体分析如下: 初学Python,打算做几个Tkinter的应用来提高. 刚学的HelloWorld,秀一下.我用Python3.2的,Windows版本的. 源代码如下: #导入sys和tkinter模块 import sys, tkinter #创建主窗口 root = tkinter.Tk() root.title("HelloWorld") root.minsize(200, 10

  • Python基于回溯法子集树模板解决0-1背包问题实例

    本文实例讲述了Python基于回溯法子集树模板解决0-1背包问题.分享给大家供大家参考,具体如下: 问题 给定N个物品和一个背包.物品i的重量是Wi,其价值位Vi ,背包的容量为C.问应该如何选择装入背包的物品,使得放入背包的物品的总价值为最大? 分析 显然,放入背包的物品,是N个物品的所有子集的其中之一.N个物品中每一个物品,都有选择.不选择两种状态.因此,只需要对每一个物品的这两种状态进行遍历. 解是一个长度固定的N元0,1数组. 套用回溯法子集树模板,做起来不要太爽!!! 代码 '''0-

  • Python基于checksum计算文件是否相同的方法

    本文实例讲述了Python基于checksum计算文件是否相同的方法.分享给大家供大家参考.具体如下: 假设有2个二进制文件(0.bin, 1.bin),用checksum检验内容是否相同 # coding: utf8 # Python2.6.2 import md5 with open('0.bin', 'rb') as f: s = md5.new(f.read()).hexdigest() with open('1.bin', 'rb') as f: ss = md5.new(f.read

  • Python基于正则表达式实现检查文件内容的方法【文件检索】

    本文实例讲述了Python基于正则表达式实现检查文件内容的方法分享给大家供大家参考,具体如下: 这个是之前就在学python,欣赏python的小巧但是功能强大,是连电池都自带的语言.平时工作中用Java ,觉得python在日常生活中比java用处要大,首先语法没那么复杂,特别是io的操作,java里要写一大坨没关的代码.还有就是不用编译,而且linux系统默认都会自带. 这次遇到的问题是工作当中想要迁移一个系统中的一个模块,这个时候需要评估模块里的代码有没有对其他代码强依赖,就是有没有imp

随机推荐