opencv实现棋盘格检测

本文实例为大家分享了opencv实现棋盘格检测的具体代码,供大家参考,具体内容如下

代码:

#include <iostream>
#include <vector>
#include <opencv2/opencv.hpp>  
#include <opencv2/xfeatures2d.hpp>
#include <opencv2/optflow/motempl.hpp>
using namespace cv;  
using namespace std;
/*
棋盘格角点检测应用
*/
 
int main()
{
    //***********************************  1  ****************************************************************
    /*Mat img = imread("C:\\Users\\H\\Desktop\\13.png", IMREAD_GRAYSCALE);
    vector<Point2f> corner;
    bool result = findChessboardCorners(img, Size(5, 7), corner, CALIB_CB_ADAPTIVE_THRESH | CALIB_CB_NORMALIZE_IMAGE);
    cornerSubPix(img, corner, Size(11, 11), Size(-1, -1), TermCriteria(TermCriteria::EPS | TermCriteria::MAX_ITER, 20, 0.03));
    drawChessboardCorners(img, Size(5, 7), corner, result);
    imshow("src", img);*/
    //**********************************************************************************************************
 
 
    // **********************************  2  **************************************************
    //读入图像
    Mat src = imread("C:\\Users\\H\\Desktop\\13.png", IMREAD_COLOR);
    Mat image_gray;
    cvtColor(src, image_gray, COLOR_BGR2GRAY);
    //定义存储角点的容器
    vector<Point2f> corners;
    //进行角点检测
    bool ret = findChessboardCorners(image_gray,
                                        Size(5, 7), // 棋盘格每列点数和每一行点数
                                        corners,    // 输出检测到角点的数组
                                        CALIB_CB_ADAPTIVE_THRESH |
                                        CALIB_CB_NORMALIZE_IMAGE);
 
    //指定亚像素计算迭代标注
    TermCriteria criteria = TermCriteria(TermCriteria::MAX_ITER + TermCriteria::EPS,
                                        40,   // 要计算的最大迭代次数或元素数
                                        0.1); // 迭代算法停止时所需的精度或参数变化
    //亚像素检测
    cornerSubPix(image_gray, 
                    corners, 
                    Size(5, 5), //搜索窗口大小
                    Size(-1, -1), 
                    criteria);
    //角点绘制
    drawChessboardCorners(src,
                            Size(5, 7), //棋盘格每列点数和每一行点数
                            corners, 
                            ret);
    cout << "corner: " << corners << endl;
 
    //在原图中绘制点
    Point pt;
    pt.x = corners[9].x;
    pt.y = corners[9].y;
    circle(src, pt, 4, Scalar(0, 255, 0),-1);
 
    imshow("chessboard corners", src);
    // ****************************************************************************************
 
    waitKey(0);
 
    return 0;
}

结果展示:

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • OpenCV形状检测的示例详解

    目录 1.基于OpenCV的形状检测Python版本 1.1.定义我们的形状检测器类ShapeDetector 1.2.基于OpenCV的形状检测器 2.基于OpenCV的形状检测C++版本 2.1代码实现 2.2主要函数解析 2.3结果展示 1.基于OpenCV的形状检测Python版本 目录结构 1.1.定义我们的形状检测器类ShapeDetector 开始定义我们的 ShapeDetector 类.我们将跳过这里的 init 构造函数,因为不需要初始化任何东西. # 导入必要的包 impo

  • C++ opencv图像处理实现图片边缘检测示例

    目录 边缘检测简介 一.边缘检测步骤 二.Canny 1.函数 2.代码 二.Sobel 1.函数 2.代码 三.Scharr 1.函数 2.代码 四.Laplacian 1.函数 2.代码 总结 边缘检测简介 边缘检测是图像处理和计算机视觉中的基本问题,边缘检测的目的是标识数字图像中亮度变化明显的点. 图像边缘检测大幅度地减少了数据量,并且剔除量不相关的信息,保留了图像重要的结构属性. 一.边缘检测步骤 1.图像获取 2.图像滤波 3.图像增强 4.图像检测 5.图像定位 二.Canny 1.

  • OpenCV凸包检测和凸缺陷学习示例

    目录 1.凸包检测与凸缺陷定义 2.opencv相关实现函数 3.代码实践 4.总结 1.凸包检测与凸缺陷定义 凸包是将最外层的点连接起来构成的凸多边形,它能包含点击中所有的点.物体的凸包检测常应用在物体识别.手势识别及边界检测等领域. 凸包检测常常用在轮廓分析之后.对二值图像进行轮廓分析之后,可以构建每个轮廓的凸包,构建完成之后会返回该凸包包含的点集.根据返回的凸包点集可以绘制该轮廓对应的凸包.一般来说,凸性曲线总是凸出来的,至少是平的.如果有地方凹进去了就被叫做凸性缺陷. 下图可以更加直接的

  • C++ OpenCV实战之网孔检测的实现

    目录 前言 一.HSV通道转换 二.图像修复 2.1 OpenCV函数实现 2.2 MyFunction 三.轮廓提取 四.效果显示 五.源码 总结 前言 前段时间,有位粉丝私信我,给我发了一张图片,如下图所示: 在这里贴出他的原话. 从他给的图片分析,该图存在遮挡,所以不能简单的二值化,然后提取图像轮廓去寻找结果.所以,我就想如何去掉这些遮挡物(即图像修复).从图像可知,该遮挡物是黄色的线,所以,我就想可否使用hsv色彩空间提取出黄色,然后得到二值掩模图像,最后对原图进行修复.接下来,就一起看

  • OpenCV实现直线检测

    本文实例为大家分享了OpenCV实现直线检测的具体代码,供大家参考,具体内容如下 1 介绍 本文主要介绍OpenCV自带的直线检测函数HoughLines()的用法,这个函数的第一个参数是一个二值化图像,所以在进行霍夫变换之前要首先进行二值化,或者进行Canny 边缘检测.第二和第三个值分别代表β 和 θ 的精确度.第四个参数是阈值,只有累加其中的值高于阈值时才被认为是一条直线,也可以把它看成能检测到的直线的最短长度(以像素点为单位).返回值就是(β; θ).β 的单位是像素,θ的单位是弧度.

  • opencv实现棋盘格检测

    本文实例为大家分享了opencv实现棋盘格检测的具体代码,供大家参考,具体内容如下 代码: #include <iostream> #include <vector> #include <opencv2/opencv.hpp>   #include <opencv2/xfeatures2d.hpp> #include <opencv2/optflow/motempl.hpp> using namespace cv;   using namespa

  • 基于openCV实现人脸检测

    openCV的人脸识别主要通过Haar分类器实现,当然,这是在已有训练数据的基础上.openCV安装在 opencv/opencv/sources/data/haarcascades_cuda(或haarcascades)中存在预先训练好的物体检测器(xml格式),包括正脸.侧脸.眼睛.微笑.上半身.下半身.全身等. openCV的的Haar分类器是一个监督分类器,首先对图像进行直方图均衡化并归一化到同样大小,然后标记里面是否包含要监测的物体.它首先由Paul Viola和Michael Jon

  • OpenCV实现人脸检测

    前段日子,写了个人脸检测的小程序,可以检测标记图片.视频.摄像头中的人脸.效果还行吧,用的是opencv提供人脸库.至于具体的人脸检测原理,找资料去啃吧. 环境:VS2013+OPENCV2.4.10+Win8.1 一.基于对话框的MFC 首先,新建一个基于对话框的MFC应用程序,命名为myFaceDetect(取消"安全开发周期(SDL)检查"勾选,我自己习惯取消这个). 放置Button,设置Button的ID和Caption. 图片按钮--ID:IDC_FACEDETECT 视频

  • C++利用opencv实现人脸检测

    小编所有的帖子都是基于unbuntu系统的,当然稍作修改同样试用于windows的,经过小编的绞尽脑汁,把刚刚发的那篇python 实现人脸和眼睛的检测的程序用C++ 实现了,当然,也参考了不少大神的博客,下面我们就一起来看看: Linux系统下安装opencv我就再啰嗦一次,防止有些人没有安装没调试出来喷小编的程序是个坑, sudo apt-get install libcv-dev sudo apt-get install libopencv-dev 看看你的usr/share/opencv

  • python+opencv实现霍夫变换检测直线

    本文实例为大家分享了python+opencv实现霍夫变换检测直线的具体代码,供大家参考,具体内容如下 python+opencv实现高斯平滑滤波 python+opencv实现阈值分割 功能: 创建一个滑动条来控制检测直线的长度阈值,即大于该阈值的检测出来,小于该阈值的忽略 注意:这里用的函数是HoughLinesP而不是HoughLines,因为HoughLinesP直接给出了直线的断点,在画出线段的时候可以偷懒 代码: # -*- coding: utf-8 -*- import cv2

  • Java+OpenCV实现人脸检测并自动拍照

    java+opencv实现人脸检测,调用笔记本摄像头实时抓拍,人脸会用红色边框标识出来,并且将抓拍的目录存放在src下,图片名称是时间戳. 环境配置:win7 64位,jdk1.8 CameraBasic.java package com.njupt.zhb.test; import java.awt.EventQueue; import javax.swing.ImageIcon; import javax.swing.JFrame; import javax.swing.JLabel; im

  • Python OpenCV调用摄像头检测人脸并截图

    本文实例为大家分享了Python OpenCV调用摄像头检测人脸并截图的具体代码,供大家参考,具体内容如下 注意:需要在python中安装OpenCV库,同时需要下载OpenCV人脸识别模型haarcascade_frontalface_alt.xml,模型可在OpenCV-PCA-KNN-SVM_face_recognition中下载. 使用OpenCV调用摄像头检测人脸并连续截图100张 #-*- coding: utf-8 -*- # import 进openCV的库 import cv2

  • Python基于OpenCV实现人脸检测并保存

    本文实例为大家分享了Python基于OpenCV实现人脸检测,并保存的具体代码,供大家参考,具体内容如下 安装opencv 如果安装了pip的话,Opencv的在windows的安装可以直接通过cmd命令pip install opencv-python(只需要主要模块),也可以输入命令pip install opencv-contrib-python(如果需要main模块和contrib模块) 详情可以点击此处 导入opencv import cv2 所有包都包含haarcascade文件.这

  • android端使用openCV实现车牌检测

    现在,汽车的踪影无处不在,公路上疾驰,大街边临停,小区中停靠,车库里停泊.管理监控如此庞大数量的汽车是个头疼的问题.精明的人们把目光放在车牌上,因为车牌是汽车的"身份证".所以车牌识别成为了焦点,而车牌检测是车牌识别的基础和前提.本篇文章,主要讨论使用openCV实现车牌检测. openCV是开源计算机视觉库,基于计算机视觉与机器学习,提供强大的图像处理能力.我们可以快速集成openCV库到android端,其中一种方式是直接安装openCV Manager,按需使用:启动服务去动态加

  • Python下应用opencv 实现人脸检测功能

    使用OpenCV's Haar cascades作为人脸检测,因为他做好了库,我们只管使用. 代码简单,除去注释,总共有效代码只有10多行. 所谓库就是一个检测人脸的xml 文件,可以网上查找,下面是一个地址: https://github.com/opencv/opencv/blob/master/data/haarcascades/haarcascade_frontalface_default.xml 如何构造这个库,学习完本文后可以参考: http://note.sonots.com/Sc

随机推荐