Python图像处理之直线和曲线的拟合与绘制【curve_fit()应用】

本文实例讲述了Python图像处理之直线和曲线的拟合与绘制。分享给大家供大家参考,具体如下:

在数据处理和绘图中,我们通常会遇到直线或曲线的拟合问题,python中scipy模块的子模块optimize中提供了一个专门用于曲线拟合的函数curve_fit()

下面通过示例来说明一下如何使用curve_fit()进行直线和曲线的拟合与绘制。

代码如下:

# -*- coding:utf-8 -*-
import numpy as np
import matplotlib.pyplot as plt
from scipy import optimize
#直线方程函数
def f_1(x, A, B):
  return A*x + B
#二次曲线方程
def f_2(x, A, B, C):
  return A*x*x + B*x + C
#三次曲线方程
def f_3(x, A, B, C, D):
  return A*x*x*x + B*x*x + C*x + D
def plot_test():
  plt.figure()
  #拟合点
  x0 = [1, 2, 3, 4, 5]
  y0 = [1, 3, 8, 18, 36]
  #绘制散点
  plt.scatter(x0[:], y0[:], 25, "red")
  #直线拟合与绘制
  A1, B1 = optimize.curve_fit(f_1, x0, y0)[0]
  x1 = np.arange(0, 6, 0.01)
  y1 = A1*x1 + B1
  plt.plot(x1, y1, "blue")
  #二次曲线拟合与绘制
  A2, B2, C2 = optimize.curve_fit(f_2, x0, y0)[0]
  x2 = np.arange(0, 6, 0.01)
  y2 = A2*x2*x2 + B2*x2 + C2
  plt.plot(x2, y2, "green")
  #三次曲线拟合与绘制
  A3, B3, C3, D3= optimize.curve_fit(f_3, x0, y0)[0]
  x3 = np.arange(0, 6, 0.01)
  y3 = A3*x3*x3*x3 + B3*x3*x3 + C3*x3 + D3
  plt.plot(x3, y3, "purple")
  plt.title("www.jb51.net test")
  plt.xlabel('x')
  plt.ylabel('y')
  plt.show()
  return
plot_test()

拟合和绘制解果如下:

当然,curve_fit()函数不仅可以用于直线、二次曲线、三次曲线的拟合和绘制,仿照代码中的形式,可以适用于任意形式的曲线的拟合和绘制,只要定义好合适的曲线方程即可。

如高斯曲线拟合,曲线函数形式如下:

def f_gauss(x, A, B, C, sigma):
  return A*np.exp(-(x-B)**2/(2*sigma**2)) + C

PS:这里再为大家推荐两款相似的在线工具供大家参考:

在线多项式曲线及曲线函数拟合工具:
http://tools.jb51.net/jisuanqi/create_fun

在线绘制多项式/函数曲线图形工具:
http://tools.jb51.net/jisuanqi/fun_draw

更多关于Python相关内容感兴趣的读者可查看本站专题:《Python数学运算技巧总结》、《Python数据结构与算法教程》、《Python函数使用技巧总结》、《Python字符串操作技巧汇总》及《Python入门与进阶经典教程》

希望本文所述对大家Python程序设计有所帮助。

(0)

相关推荐

  • Python图像的增强处理操作示例【基于ImageEnhance类】

    本文实例讲述了Python图像的增强处理操作.分享给大家供大家参考,具体如下: python中PIL模块中有一个叫做ImageEnhance的类,该类专门用于图像的增强处理,不仅可以增强(或减弱)图像的亮度.对比度.色度,还可以用于增强图像的锐度. 具体见下面的例子: #-*- coding: UTF-8 -*- from PIL import Image from PIL import ImageEnhance #原始图像 image = Image.open('lena.jpg') imag

  • Python+OpenCV实现图像融合的原理及代码

    根据导师作业安排,在学习数字图像处理(刚萨雷斯版)第六章 彩色图像处理 中的彩色模型后,导师安排了一个比较有趣的作业: 融合原理为: 1 注意:遥感原RGB图image和灰度图Grayimage为测试用的输入图像: 2 步骤:(1)将RGB转换为HSV空间(H:色调,S:饱和度,V:明度): (2)用Gray图像诶换掉HSV中的V: (3)替换后的HSV转换回RGB空间即可得到结果. 书上只介绍了HSI彩色模型,并没有说到HSV,所以需要网上查找资料. Python代码如下: import cv

  • Python图像处理之gif动态图的解析与合成操作详解

    本文实例讲述了Python图像处理之gif动态图的解析与合成操作.分享给大家供大家参考,具体如下: gif动态图是在现在已经司空见惯,朋友圈里也经常是一言不合就斗图.这里,就介绍下如何使用python来解析和生成gif图像. 一.gif动态图的合成 如下图,是一个gif动态图. gif动态图的解析可以使用PIL图像模块即可,具体代码如下: #-*- coding: UTF-8 -*- import os from PIL import Image def analyseImage(path):

  • opencv python 图像去噪的实现方法

    在早先的章节里,我们看到很多图像平滑技术如高斯模糊,Median模糊等,它们在移除数量小的噪音时在某种程度上比较好用.在这些技术里,我们取像素周围的一小部分邻居,做一些类似于高斯平均权重,中值等替换掉中间的元素.简单说,移除一个像素的噪音是基于本地邻居的. 噪音有一个属性,噪音一般被认为是具有零平均值的随机变量.假设一个像素噪音,p = p0 + n, 其中p0是像素的真实值,n是那个像素的噪音.你可以从不同图像取大量的同一个像素(N)并计算他们的平均值,理想情况下,你应该得到p=p0,因为均值

  • Python图像滤波处理操作示例【基于ImageFilter类】

    本文实例讲述了Python图像滤波处理操作.分享给大家供大家参考,具体如下: 在图像处理中,经常需要对图像进行平滑.锐化.边界增强等滤波处理.在使用PIL图像处理库时,我们通过Image类中的成员函数filter()来调用滤波函数对图像进行滤波,而滤波函数则通过ImageFilter类来定义的. 下面先直接看一个样例: #-*- coding: UTF-8 -*- from PIL import Image from PIL import ImageFilter def image_filter

  • Python图像灰度变换及图像数组操作

    使用python以及numpy通过直接操作图像数组完成一系列基本的图像处理 numpy简介: NumPy是一个非常有名的 Python 科学计算工具包,其中包含了大量有用的工具,比如数组对象(用来表示向量.矩阵.图像等)以及线性代数函数. 数组对象可以实现数组中重要的操作,比如矩阵乘积.转置.解方程系统.向量乘积和归一化.这为图像变形.对变化进行建模.图像分类.图像聚类等提供了基础. 在上一篇python基本图像操作中,当载入图像时,通过调用 array() 方法将图像转换成NumPy的数组对象

  • python-opencv在有噪音的情况下提取图像的轮廓实例

    对于一般的图像提取轮廓,介绍了一个很好的方法,但是对于有噪声的图像,并不能很好地捕获到目标物体. 比如对于我的鼠标,提取的轮廓效果并不好,因为噪声很多: 所以本文增加了去掉噪声的部分. 首先加载原始图像,并显示图像 img = cv2.imread("temp.jpg") #载入图像 h, w = img.shape[:2] #获取图像的高和宽 cv2.imshow("Origin", img) 然后进行低通滤波处理,进行降噪 blured = cv2.blur(i

  • Python图像处理实现两幅图像合成一幅图像的方法【测试可用】

    本文实例讲述了Python图像处理实现两幅图像合成一幅图像的方法.分享给大家供大家参考,具体如下: 将两幅图像合成一幅图像,是图像处理中常用的一种操作,python图像处理库PIL中提供了多种种将两幅图像合成一幅图像的接口. 下面我们通过不同的方式,将两图合并成一幅图像. 1.使用Image.blend()接口 代码如下: # -*- coding:utf-8 -*- from PIL import Image def blend_two_images(): img1 = Image.open(

  • Python cv2 图像自适应灰度直方图均衡化处理方法

    __author__ = 'Administrator' import numpy as np import cv2 mri_img = np.load('mri_img.npy') # normalization mri_max = np.amax(mri_img) mri_min = np.amin(mri_img) mri_img = ((mri_img-mri_min)/(mri_max-mri_min))*255 mri_img = mri_img.astype('uint8') r,

  • 浅谈python下tiff图像的读取和保存方法

    对比测试 scipy.misc 和 PIL.Image 和 libtiff.TIFF 三个库 输入: 1. (读取矩阵) 读入uint8.uint16.float32的lena.tif 2. (生成矩阵) 使用numpy产生随机矩阵,float64的mat import numpy as np from scipy import misc from PIL import Image from libtiff import TIFF # # 读入已有图像,数据类型和原图像一致 tif32 = mi

  • Python图像处理之颜色的定义与使用分析

    本文实例讲述了Python图像处理之颜色的定义与使用.分享给大家供大家参考,具体如下: python中的颜色相关的定义在matplotlib模块中,为方便使用,这里给大家展示一下在这个模块中都定义了哪些选颜色. 1.颜色名称的导出 导出代码如下: import matplotlib for name, hex in matplotlib.colors.cnames.iteritems(): print(name, hex) 导出结果如下: names = { 'aliceblue':      

  • python图像处理之反色实现方法

    本文实例讲述了python图像处理之反色实现方法.分享给大家供大家参考.具体如下: 我们先加载一个8位灰度图像 每一个像素对应的灰度值从0-255 则只需要读取每个像素的灰度值A,再将255-A写入 这样操作一遍后,图像就会反色了 这里运行环境为: Python为:Python2.7.6 OpenCV2.4.10版(可到http://sourceforge.net/projects/opencvlibrary/files/opencv-win/下载) numpy为:numpy-1.9.1-win

随机推荐