Python数字图像处理之霍夫线变换实现详解

在图片处理中,霍夫变换主要是用来检测图片中的几何形状,包括直线、圆、椭圆等。

在skimage中,霍夫变换是放在tranform模块内,本篇主要讲解霍夫线变换。

对于平面中的一条直线,在笛卡尔坐标系中,可用y=mx+b来表示,其中m为斜率,b为截距。但是如果直线是一条垂直线,则m为无穷大,所有通常我们在另一坐标系中表示直线,即极坐标系下的r=xcos(theta)+ysin(theta)。即可用(r,theta)来表示一条直线。其中r为该直线到原点的距离,theta为该直线的垂线与x轴的夹角。如下图所示。

对于一个给定的点(x0,y0), 我们在极坐标下绘出所有通过它的直线(r,theta),将得到一条正弦曲线。如果将图片中的所有非0点的正弦曲线都绘制出来,则会存在一些交点。所有经过这个交点的正弦曲线,说明都拥有同样的(r,theta), 意味着这些点在一条直线上。

发上图所示,三个点(对应图中的三条正弦曲线)在一条直线上,因为这三个曲线交于一点,具有相同的(r, theta)。霍夫线变换就是利用这种方法来寻找图中的直线。

函数:skimage.transform.hough_line(img)

返回三个值:

h: 霍夫变换累积器

theta: 点与x轴的夹角集合,一般为0-179度

distance: 点到原点的距离,即上面的所说的r.

例:

import skimage.transform as st
import numpy as np
import matplotlib.pyplot as plt

# 构建测试图片
image = np.zeros((100, 100)) #背景图
idx = np.arange(25, 75)  #25-74序列
image[idx[::-1], idx] = 255 # 线条\
image[idx, idx] = 255    # 线条/

# hough线变换
h, theta, d = st.hough_line(image)

#生成一个一行两列的窗口(可显示两张图片).
fig, (ax0, ax1) = plt.subplots(1, 2, figsize=(8, 6))
plt.tight_layout()

#显示原始图片
ax0.imshow(image, plt.cm.gray)
ax0.set_title('Input image')
ax0.set_axis_off()

#显示hough变换所得数据
ax1.imshow(np.log(1 + h))
ax1.set_title('Hough transform')
ax1.set_xlabel('Angles (degrees)')
ax1.set_ylabel('Distance (pixels)')
ax1.axis('image')

从右边那张图可以看出,有两个交点,说明原图像中有两条直线。

如果我们要把图中的两条直线绘制出来,则需要用到另外一个函数:

skimage.transform.hough_line_peaks(hspace, angles, dists)

用这个函数可以取出峰值点,即交点,也即原图中的直线。

返回的参数与输入的参数一样。我们修改一下上边的程序,在原图中将两直线绘制出来。

import skimage.transform as st
import numpy as np
import matplotlib.pyplot as plt

# 构建测试图片
image = np.zeros((100, 100)) #背景图
idx = np.arange(25, 75)  #25-74序列
image[idx[::-1], idx] = 255 # 线条\
image[idx, idx] = 255    # 线条/

# hough线变换
h, theta, d = st.hough_line(image)

#生成一个一行三列的窗口(可显示三张图片).
fig, (ax0, ax1,ax2) = plt.subplots(1, 3, figsize=(8, 6))
plt.tight_layout()

#显示原始图片
ax0.imshow(image, plt.cm.gray)
ax0.set_title('Input image')
ax0.set_axis_off()

#显示hough变换所得数据
ax1.imshow(np.log(1 + h))
ax1.set_title('Hough transform')
ax1.set_xlabel('Angles (degrees)')
ax1.set_ylabel('Distance (pixels)')
ax1.axis('image')

#显示检测出的线条
ax2.imshow(image, plt.cm.gray)
row1, col1 = image.shape
for _, angle, dist in zip(*st.hough_line_peaks(h, theta, d)):
  y0 = (dist - 0 * np.cos(angle)) / np.sin(angle)
  y1 = (dist - col1 * np.cos(angle)) / np.sin(angle)
  ax2.plot((0, col1), (y0, y1), '-r')
ax2.axis((0, col1, row1, 0))
ax2.set_title('Detected lines')
ax2.set_axis_off()

注意,绘制线条的时候,要从极坐标转换为笛卡尔坐标,公式为:

skimage还提供了另外一个检测直线的霍夫变换函数,概率霍夫线变换:

skimage.transform.probabilistic_hough_line(img, threshold=10, line_length=5,line_gap=3)

参数:

img: 待检测的图像。

threshold: 阈值,可先项,默认为10

line_length: 检测的最短线条长度,默认为50

line_gap: 线条间的最大间隙。增大这个值可以合并破碎的线条。默认为10

返回:

lines: 线条列表, 格式如((x0, y0), (x1, y0)),标明开始点和结束点。

下面,我们用canny算子提取边缘,然后检测哪些边缘是直线?

import skimage.transform as st
import matplotlib.pyplot as plt
from skimage import data,feature

#使用Probabilistic Hough Transform.
image = data.camera()
edges = feature.canny(image, sigma=2, low_threshold=1, high_threshold=25)
lines = st.probabilistic_hough_line(edges, threshold=10, line_length=5,line_gap=3)

# 创建显示窗口.
fig, (ax0, ax1, ax2) = plt.subplots(1, 3, figsize=(16, 6))
plt.tight_layout()

#显示原图像
ax0.imshow(image, plt.cm.gray)
ax0.set_title('Input image')
ax0.set_axis_off()

#显示canny边缘
ax1.imshow(edges, plt.cm.gray)
ax1.set_title('Canny edges')
ax1.set_axis_off()

#用plot绘制出所有的直线
ax2.imshow(edges * 0)
for line in lines:
  p0, p1 = line
  ax2.plot((p0[0], p1[0]), (p0[1], p1[1]))
row2, col2 = image.shape
ax2.axis((0, col2, row2, 0))
ax2.set_title('Probabilistic Hough')
ax2.set_axis_off()
plt.show()

总结

以上就是本文关于Python数字图像处理之霍夫线变换实现详解的全部内容,希望对大家有所帮助。感兴趣的朋友可以继续参阅本站其他相关专题,如有不足之处,欢迎留言指出。感谢朋友们对本站的支持!

(0)

相关推荐

  • python使用pil进行图像处理(等比例压缩、裁剪)实例代码

    PIL中设计的几个基本概念 1.通道(bands):即使图像的波段数,RGB图像,灰度图像 以RGB图像为例: >>>from PIL import Image >>>im = Image.open('*.jpg') # 打开一张RGB图像 >>>im_bands = im.g etbands() # 获取RGB三个波段 >>>len(im_bands) >>>print im_bands[0,1,2] # 输出RG

  • python图像处理之反色实现方法

    本文实例讲述了python图像处理之反色实现方法.分享给大家供大家参考.具体如下: 我们先加载一个8位灰度图像 每一个像素对应的灰度值从0-255 则只需要读取每个像素的灰度值A,再将255-A写入 这样操作一遍后,图像就会反色了 这里运行环境为: Python为:Python2.7.6 OpenCV2.4.10版(可到http://sourceforge.net/projects/opencvlibrary/files/opencv-win/下载) numpy为:numpy-1.9.1-win

  • python使用TensorFlow进行图像处理的方法

    一.图片的放大缩小 在使用TensorFlow进行图片的放大缩小时,有三种方式: 1.tf.image.resize_nearest_neighbor():临界点插值 2.tf.image.resize_bilinear():双线性插值 3.tf.image.resize_bicubic():双立方插值算法 下面是示例代码: # encoding:utf-8 # 使用TensorFlow进行图片的放缩 import tensorflow as tf import cv2 import numpy

  • Python图像处理之识别图像中的文字(实例讲解)

    ①安装PIL:pip install Pillow(之前的博客中有写过) ②安装pytesser3:pip install pytesser3 ③安装pytesseract:pip install pytesseract ④安装autopy3: 先安装wheel:pip install wheel 下载autopy3-0.51.1-cp36-cp36m-win_amd64.whl[点击打开链接] 执行命令:pip install E:\360安全浏览器下载\autopy3-0.51.1-cp36

  • python数字图像处理之高级滤波代码详解

    本文提供许多的滤波方法,这些方法放在filters.rank子模块内. 这些方法需要用户自己设定滤波器的形状和大小,因此需要导入morphology模块来设定. 1.autolevel 这个词在photoshop里面翻译成自动色阶,用局部直方图来对图片进行滤波分级. 该滤波器局部地拉伸灰度像素值的直方图,以覆盖整个像素值范围. 格式:skimage.filters.rank.autolevel(image, selem) selem表示结构化元素,用于设定滤波器. from skimage im

  • python数字图像处理实现直方图与均衡化

    在图像处理中,直方图是非常重要,也是非常有用的一个处理要素. 在skimage库中对直方图的处理,是放在exposure这个模块中. 1.计算直方图 函数:skimage.exposure.histogram(image,nbins=256) 在numpy包中,也提供了一个计算直方图的函数histogram(),两者大同小义. 返回一个tuple(hist, bins_center), 前一个数组是直方图的统计量,后一个数组是每个bin的中间值 import numpy as np from s

  • Python图像处理之简单画板实现方法示例

    本文实例讲述了Python图像处理之简单画板实现方法.分享给大家供大家参考,具体如下: Python图像处理也是依赖opencv的Python接口实现的,Python语言简单易懂,简洁明了.本次实现画板涂鸦,一个是在里面画矩形,还有画线.其他也都可以扩展,本案例只做例程,思路是对鼠标事件的处理,以及滚动条调节颜色处理.鼠标事件就包含有左键按下,以及释放事件的处理. import cv2 import numpy as np # null function def nothing(x): pass

  • python+pygame简单画板实现代码实例

    疑问:pygame已经过时了吗? 过没过时不知道,反正这玩意官方已经快四年没有更新了.用的人还是蛮多的(相对于其他同类项目),不过大家都是用来写写小东西玩一玩,没有人用这个做商业项目.pygame其实就是SDL的python绑定,SDL又是基于OpenGL,所以也有人用pygame+pyOpenGL做3D演示什么的.真的要写游戏的话pygame的封装比较底层,不太够用,很多东西都要自己实现(当然自由度也高).文档也不太好,好在前人留下了很多文章.拿来练手倒是很不错的选择,可以用来实践很多2D游戏

  • python数字图像处理之骨架提取与分水岭算法

    骨架提取与分水岭算法也属于形态学处理范畴,都放在morphology子模块内. 1.骨架提取 骨架提取,也叫二值图像细化.这种算法能将一个连通区域细化成一个像素的宽度,用于特征提取和目标拓扑表示. morphology子模块提供了两个函数用于骨架提取,分别是Skeletonize()函数和medial_axis()函数.我们先来看Skeletonize()函数. 格式为:skimage.morphology.skeletonize(image) 输入和输出都是一幅二值图像. 例1: from s

  • python数字图像处理之高级形态学处理

    形态学处理,除了最基本的膨胀.腐蚀.开/闭运算.黑/白帽处理外,还有一些更高级的运用,如凸包,连通区域标记,删除小块区域等. 1.凸包 凸包是指一个凸多边形,这个凸多边形将图片中所有的白色像素点都包含在内. 函数为: skimage.morphology.convex_hull_image(image) 输入为二值图像,输出一个逻辑二值图像.在凸包内的点为True, 否则为False 例: import matplotlib.pyplot as plt from skimage import d

  • Python3使用PyQt5制作简单的画板/手写板实例

    1.前言 版本:Python3.6.1 + PyQt5 写一个程序的时候需要用到画板/手写板,只需要最简单的那种.原以为网上到处都是,结果找了好几天,都没有找到想要的结果. 网上的要么是非python版的qt程序(要知道qt版本之间差异巨大,还是非同一语言的),改写难度太大.要么是PyQt4的老程序,很多都已经不能在PyQt5上运行了.要么是大神写的特别复杂的程序,简直是直接做出了一个Windows自带的画图版,只能膜拜~ 于是我只能在众多代码中慢慢寻找自己需要的那一小部分,然后不断地拼凑,不断

  • python图像处理之镜像实现方法

    本文实例讲述了python图像处理之镜像实现方法.分享给大家供大家参考.具体分析如下: 图像的镜像变化不改变图像的形状.图像的镜像变换分为三种:水平镜像.垂直镜像.对角镜像 设图像的大小为M×N,则 水平镜像可按公式 I = i J = N - j + 1 垂直镜像可按公式 I = M - i + 1 J = j 对角镜像可按公式 I = M - i + 1 J = N - j + 1 值得注意的是在OpenCV中坐标是从[0,0]开始的 所以,式中的 +1 在编程时需要改为 -1 这里运行环境

随机推荐