R语言基本语法知识点

我们将开始学习R语言编程,首先编写一个“你好,世界! 的程序。 根据需要,您可以在R语言命令提示符处编程,也可以使用R语言脚本文件编写程序。让我们逐个体验不同之处。

命令提示符

如果你已经配置好R语言环境,那么你只需要按一下的命令便可轻易开启命令提示符

$ R

这将启动R语言解释器,你会得到一个提示 > 在那里你可以开始输入你的程序,具体如下。

> myString <- "Hello, World!"
> print ( myString)
[1] "Hello, World!"

在这里,第一个语句先定义一个字符串变量myString,并将“Hello,World!”赋值其中,第二句则使用print()语句将变量myString的内容进行打印。

脚本文件

通常,您将通过在脚本文件中编写程序来执行编程,然后在命令提示符下使用R解释器(称为Rscript)来执行这些脚本。 所以让我们开始在一个命名为test.R的文本文件中编写下面的代码

# My first program in R Programming
myString <- "Hello, World!"

print ( myString)

将上述代码保存在test.R文件中,并在Linux命令提示符下执行,如下所示。 即使您使用的是Windows或其他系统,语法也将保持不变。

$ Rscript test.R 

当我们运行上面的程序,它产生以下结果。

[1] "Hello, World!"

注释

注释能帮助您解释R语言程序中的脚本,它们在实际执行程序时会被解释器忽略。 单个注释使用#在语句的开头写入,如下所示

# My first program in R Programming

R语言不支持多行注释,但你可以使用一个小技巧,如下

if(FALSE) {
  "This is a demo for multi-line comments and it should be put inside either a single
   OR double quote"
}

myString <- "Hello, World!"
print ( myString)

到此这篇关于R语言基本语法知识点的文章就介绍到这了,更多相关R语言基本语法内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • R语言基本语法深入讲解

    基本数据类型 数据类型 向量 vector 矩阵 matrix 数组 array 数据框 data frame 因子 factor 列表 list 向量 单个数值(标量)没有单独的数据类型,它只不过是向量的一种特例 向量的元素必须属于某种模式(mode),可以整型(integer).数值型(numeric).字符型(character).逻辑型(logical).复数型(complex) 循环补齐(recycle):在一定情况下自动延长向量 筛选:提取向量子集 向量化:对向量的每一个元素应用函数

  • R语言基本语法知识点

    我们将开始学习R语言编程,首先编写一个"你好,世界! 的程序. 根据需要,您可以在R语言命令提示符处编程,也可以使用R语言脚本文件编写程序.让我们逐个体验不同之处. 命令提示符 如果你已经配置好R语言环境,那么你只需要按一下的命令便可轻易开启命令提示符 $ R 这将启动R语言解释器,你会得到一个提示 > 在那里你可以开始输入你的程序,具体如下. > myString <- "Hello, World!" > print ( myString) [1]

  • R语言数据重塑知识点总结

    R 语言中的数据重塑是关于改变数据被组织成行和列的方式. 大多数时间 R 语言中的数据处理是通过将输入数据作为数据帧来完成的. 很容易从数据帧的行和列中提取数据,但是在某些情况下,我们需要的数据帧格式与我们接收数据帧的格式不同. R 语言具有许多功能,在数据帧中拆分,合并和将行更改为列,反之亦然. 于数据帧中加入列和行 我们可以使用 cbind() 函数连接多个向量来创建数据帧. 此外,我们可以使用 rbind() 函数合并两个数据帧. # Create vector objects. city

  • R语言函数基础知识点总结

    函数是一组组合在一起以执行特定任务的语句. R 语言具有大量内置函数,用户可以创建自己的函数. 在R语言中,函数是一个对象,因此R语言解释器能够将控制传递给函数,以及函数完成动作所需的参数. 该函数依次执行其任务并将控制返回到解释器以及可以存储在其他对象中的任何结果. 函数定义 使用关键字函数创建 R 语言的函数. R 语言的函数定义的基本语法如下 function_name <- function(arg_1, arg_2, ...) { Function body } 函数组件 函数的不同部

  • R语言关于多重回归知识点总结

    多元回归是线性回归到两个以上变量之间的关系的延伸. 在简单线性关系中,我们有一个预测变量和一个响应变量,但在多元回归中,我们有多个预测变量和一个响应变量. 多元回归的一般数学方程为 y = a + b1x1 + b2x2 +...bnxn 以下是所使用的参数的描述 y是响应变量. a,b1,b2 ... bn是系数. x1,x2,... xn是预测变量. 我们使用R语言中的lm()函数创建回归模型.模型使用输入数据确定系数的值. 接下来,我们可以使用这些系数来预测给定的一组预测变量的响应变量的值

  • R语言关于决策树知识点总结

    决策树是以树的形式表示选择及其结果的图.图中的节点表示事件或选择,并且图的边缘表示决策规则或条件.它主要用于使用R的机器学习和数据挖掘应用程序. 决策树的使用的例子是 预测电子邮件是垃圾邮件或非垃圾邮件,预测肿瘤癌变,或者基于这些因素预测贷款的信用风险.通常,使用观测数据(也称为训练数据)来创建模型.然后使用一组验证数据来验证和改进模型. R具有用于创建和可视化决策树的包.对于新的预测变量集合,我们使用此模型来确定R包"party"用于创建决策树. 安装R语言包 在R语言控制台中使用以

  • R语言决策基础知识点详解

    决策结构要求程序员指定要由程序评估或测试的一个或多个条件,以及如果条件被确定为真则要执行的一个或多个语句,如果条件为假则执行其他语句. 以下是在大多数编程语言中的典型决策结构的一般形式 R提供以下类型的决策语句. 单击以下链接以检查其详细信息. Sr.No. 声明和描述 1 if语句 if语句由一个布尔表达式后跟一个或多个语句组成. 2 if ... else语句 if语句后面可以有一个可选的else语句,当布尔表达式为false时执行. 3 switch语句 switch语句允许根据值列表测试

  • R语言关于二项分布知识点总结

    二项分布模型处理在一系列实验中仅发现两个可能结果的事件的成功概率. 例如,掷硬币总是给出头或尾. 在二项分布期间估计在10次重复抛掷硬币中精确找到3个头的概率. R语言有四个内置函数来生成二项分布. 它们描述如下. dbinom(x, size, prob) pbinom(x, size, prob) qbinom(p, size, prob) rbinom(n, size, prob) 以下是所使用的参数的描述 x是数字的向量. p是概率向量. n是观察的数量. size是试验的数量. pro

  • R语言数据框中的负索引介绍

    以R语言自带的mtcars数据框为例: 这是原始的mtcars数据: 这里只列出了前面几行数据. 然后负索引mtcars[,-2:-3],得到的结果 删除了第二列和第三列数据 所以R语言数据框中的负索引是指删除数据框中对应的列(或者行) ps:这和Python里面的规则好像不太一样,Python里的负索引好像是指倒数第几列(或者第几行),这里这两个软件区别还挺大的~~写个笔记提醒一下自己~ 补充:R语言中的负整数索引 看代码吧~ > x<-matrix(c(1,2,3,4,5,6,7,8,9)

  • R语言运算符知识点讲解

    运算符 运算符:包含一个或者两个参数的无括号的参数 符号 说明 + - * ^ %% 取模运算 %/% 整除运算 可以定义自己的二元运算符 `%myop%` = function(a, b){ 2*a + 2*b } > 1 %myop% 1 [1] 4 一些特殊的语言结构也是二元运算符 例如:赋值运算符<-,索引[],函数调用max(a, b) 运算顺序 运算符的优先级 (按优先级排序) 运算符 描述 ({ 函数调用和分组表达式 [ [[ 索引 :: ::: 访问命名空间中的变量 $ @ 成

随机推荐