基于python介绍pytorch保存和恢复参数

目录
  • 一、读写文件
    • 1.加载和保存张量
    • 2.加载和保存模型

一、读写文件

1.加载和保存张量

import torch
from torch import nn
from torch.nn import functional as F
import os

path = os.path.join(os.getcwd(), "")

x = torch.arange(4)
torch.save(x, path + "x-file")

现在我们可以将存储在文件中的数据读回内存

x2 = torch.load(path + "x-file")
x2
tensor([0, 1, 2, 3])

我们可以存储一个张量列表,然后把他们读回内存

y = torch.zeros(4)
torch.save([x, y], path + 'x-file')
x2, y2 = torch.load(path + 'x-file')
(x2, y2)
(tensor([0, 1, 2, 3]), tensor([0., 0., 0., 0.]))

我们甚至可以写入或读取从字符串映射到张量的字典。当我们要读取或写入模型中的所有权重时,这很方便

mydict = {'x': x, 'y': y}
torch.save(mydict, path + 'mydict')
mydict2 = torch.load('mydict')
mydict2
{'x': tensor([0, 1, 2, 3]), 'y': tensor([0., 0., 0., 0.])}

2.加载和保存模型

保存单个权重向量确实有用,但是如果我们想保存整个模型,并在之后加载他们,单独保存每个向量则会变得很麻烦。毕竟,我们可能有数百个参数分布在各处。深度学习框架提供了内置函数来保存和加载整个网络。需要注意的细节是,这里的保存模型并不是保存整个模型,而只是保存了其中的所有参数。
为了恢复模型,我们需要用代码生成框架,然后从磁盘加载参数。

net = MLP()
X = torch.randn(size=(2, 20))
Y = net(X)

我们将模型的参数存储在一个叫做“mlp.params”的文件中

torch.save(net.state_dict(), 'mlp.params')

为了恢复模型,我们实例化了原始多层感知机模型的一个备份。这里我们不需要随机初始化模型参数,而是直接读取文件中的参数

clone = MLP()
clone.load_state_dict(torch.load('mlp.params'))
clone.eval()
MLP(
  (hidden): Linear(in_features=20, out_features=256, bias=True)
  (out): Linear(in_features=256, out_features=10, bias=True)
)

由于两个实例具有相同的模型参数,在输入相同的X时,两个实例的计算结果应该相同

Y_clone = clone(X)
Y_clone == Y
tensor([[True, True, True, True, True, True, True, True, True, True],
        [True, True, True, True, True, True, True, True, True, True]])

到此这篇关于基于python介绍pytorch保存和恢复参数的文章就介绍到这了,更多相关pytorch保存和恢复参数内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • pytorch 预训练模型读取修改相关参数的填坑问题

    pytorch 预训练模型读取修改相关参数的填坑 修改部分层,仍然调用之前的模型参数. resnet = resnet50(pretrained=False) resnet.load_state_dict(torch.load(args.predir)) res_conv31 = Bottleneck_dilated(1024, 256,dilated_rate = 2) print("---------------------",res_conv31) print("---

  • pytorch如何获得模型的计算量和参数量

    方法1 自带 pytorch自带方法,计算模型参数总量 total = sum([param.nelement() for param in model.parameters()]) print("Number of parameter: %.2fM" % (total/1e6)) 或者 total = sum(p.numel() for p in model.parameters()) print("Total params: %.2fM" % (total/1e

  • PyTorch中的参数类torch.nn.Parameter()详解

    目录 前言 分析 ViT中nn.Parameter()的实验 其他解释 参考: 总结 前言 今天来聊一下PyTorch中的torch.nn.Parameter()这个函数,笔者第一次见的时候也是大概能理解函数的用途,但是具体实现原理细节也是云里雾里,在参考了几篇博文,做过几个实验之后算是清晰了,本文在记录的同时希望给后来人一个参考,欢迎留言讨论. 分析 先看其名,parameter,中文意为参数.我们知道,使用PyTorch训练神经网络时,本质上就是训练一个函数,这个函数输入一个数据(如CV中输

  • Pytorch中torch.nn.Softmax的dim参数用法说明

    Pytorch中torch.nn.Softmax的dim参数使用含义 涉及到多维tensor时,对softmax的参数dim总是很迷,下面用一个例子说明 import torch.nn as nn m = nn.Softmax(dim=0) n = nn.Softmax(dim=1) k = nn.Softmax(dim=2) input = torch.randn(2, 2, 3) print(input) print(m(input)) print(n(input)) print(k(inp

  • 基于python介绍pytorch保存和恢复参数

    目录 一.读写文件 1.加载和保存张量 2.加载和保存模型 一.读写文件 1.加载和保存张量 import torch from torch import nn from torch.nn import functional as F import os path = os.path.join(os.getcwd(), "") x = torch.arange(4) torch.save(x, path + "x-file") 现在我们可以将存储在文件中的数据读回内

  • 基于Python实现批量保存视频到本地

    目录 序言 开始代码 获取视频的代码 自动评论 自动点赞 自动关注 序言 是我太久没发了吗?昨天没人看,那么今天来点特别的~ 不仅把好看的视频全部pa下来,咱们还要实现自动评论.点赞.关注三连~ 宝,你也可以顺手给我个三连吗?给你个摸摸大~ 开始代码 获取视频的代码 import requests # 发送请求 第三方模块(第三方应用 pip) import re # 伪装 # 1. 选中要替换的代码 # 2. ctrl + R # 3. 第一个框(.*?): (.*) # 4. 在第二个框里面

  • 基于python及pytorch中乘法的使用详解

    numpy中的乘法 A = np.array([[1, 2, 3], [2, 3, 4]]) B = np.array([[1, 0, 1], [2, 1, -1]]) C = np.array([[1, 0], [0, 1], [-1, 0]]) A * B : # 对应位置相乘 np.array([[ 1, 0, 3], [ 4, 3, -4]]) A.dot(B) : # 矩阵乘法 ValueError: shapes (2,3) and (2,3) not aligned: 3 (dim

  • 基于Python中的yield表达式介绍

    python生成器 python中生成器是迭代器的一种,使用yield返回函数值.每次调用yield会暂停,而可以使用next()函数和send()函数可以恢复生成器. 这里可以参考Python函数式编程指南:对生成器全面讲解 注意到yield是个表达式而不仅仅是个语句,所以可以使用x = yield r 这样的语法. 这个知识点在协程中需要使用.协程的概念指的是在一个线程内,一个程序中断去执行另一个程序,有点类似于CPU中断.这样减少了切换线程带来的负担,同时不需要多线程中的锁机制,因为不存在

  • 基于Python实现捕获,播放和保存摄像头视频

    目录 读取视频 从相机中读取视频 从文件中播放视频 保存视频 前几天有个读者在粉丝群里面提了一个问题: Python 怎样提高视频清晰度和对比度? 我之前没有涉及到使用 Python 操作视频这一方面,所以当时很抱歉地跟读者朋友说暂未涉及. 这两天想了下,感觉应该补一下这一块的内容,一方面是增加自己涉猎的广度,另一方面也可以给粉丝答疑解惑. 今天先分享一下 Python 操作视频最基本的操作,包括读取和播放视频和保存视频. 读取视频 要捕获视频,你需要创建一个 VideoCapture 对象.它

  • 基于Python os模块常用命令介绍

    1.os.name---判断现在正在实用的平台,Windows返回'nt':linux返回'posix' 2.os.getcwd()---得到当前工作的目录. 3.os.listdir()--- 4.os.remove---删除指定文件 5.os.rmdir()---删除指定目录 6.os.mkdir()---创建目录(只能创建一层) 7.os.path.isfile()---判断指定对象是否为文件.是则返回True. 8.os.path.isdir()---判断指定对象是否为目录 9.os.p

  • 基于Python 中函数的 收集参数 机制

    定义函数的时候,在参数前加了一个 * 号,函数可以接收零个或多个值作为参数.返回结果是一个元组. 传递零个参数时函数并不报错,而是返回一个空元组.但以上这种方法也有局限性,它不能收集关键字参数. 对关键字参数进行收集的另一种 收集参数 机制:使用两个星号 ( ** ) ,用法同上.最后返回一个以参数名为键.参数值为键值的字典. * 和 ** 是可以一起使用的,返回特定的结果. 参数收集的用处之一是使我们编写函数时不用头疼将 N 多个参数都塞在一个括号里,既美观又省事.用处之二便是: * :可以将

  • 基于python 将列表作为参数传入函数时的测试与理解

    将一个列表传入函数后,会对这个列表本身产生什么改变? 这就是本文主要考察的内容. list = [1,2,3,4,5,6,7] word = list.pop(0) print(word) print(list) # 输出结果理所当然地为: # 1 # [2, 3, 4, 5, 6, 7] # def a(temp): b = temp.pop(0) print(b) print(temp) a(list) # 输出结果为: # 2 # [3, 4, 5, 6, 7] # 此处,传给temp时,

  • 基于Python实现主机远程控制

    目录 1.概要设计 2.详细设计 2.调试分析 3.测试结果 前言: 本文为 HITwh 网络空间安全专业网络空间安全设计与实践 I 的选题之一,主要实现了远程监控局域网内的主机桌面与网络情况.简单键鼠控制.远程断网(ARP 攻击).数据加密传输等功能.由于本文是由 Word 直接复制到 Typora 中生成的,尽管经过了简单的修改,但仍不能保证所有格式都正确,且很多图片模糊不清,暂时没有办法解决.如果有需要,请在文章末尾请我喝杯奶茶后发邮件告知我,我将把原 Word 文档以邮件形式发给您:或者

  • 基于Python实现口罩佩戴检测功能

    目录 口罩佩戴检测 一 题目背景 1.1 实验介绍 1.2 实验要求 1.3 实验环境 1.4 实验思路 二 实验内容 2.1 已知文件与数据集 2.2 图片尺寸调整 2.3 制作训练时需要用到的批量数据集 2.4 调用MTCNN 2.5 加载预训练模型MobileNet 2.6 训练模型 2.6.1 加载和保存 2.6.2 手动调整学习率 2.6.3 早停法 2.6.4 乱序训练数据 2.6.5 训练模型 三 算法描述 3.1 MTCNN 3.2 MobileNet 四 求解结果 五 比较分析

随机推荐