Python实现异常检测LOF算法的示例代码

目录
  • 背景
  • LOF算法
    • 1.k邻近距离
    • 2.k距离领域
    • 3.可达距离
    • 4.局部可达密度
    • 5.局部异常因子
  • LOF算法流程
  • LOF优缺点
  • Python实现LOF
    • PyOD
    • Sklearn

大家好,我是东哥。

本篇和大家介绍一个经典的异常检测算法:局部离群因子(Local Outlier Factor),简称LOF算法。

背景

Local Outlier Factor(LOF)是基于密度的经典算法(Breuning et. al. 2000), 文章发表于 SIGMOD 2000, 到目前已经有 3000+ 的引用。

在 LOF 之前的异常检测算法大多是基于统计方法的,或者是借用了一些聚类算法用于异常点的识别(比如 ,DBSCAN,OPTICS)。这些方法都有一些不完美的地方:

  • 基于统计的方法:通常需要假设数据服从特定的概率分布,这个假设往往是不成立的。
  • 聚类方法:通常只能给出 0/1 的判断(即:是不是异常点),不能量化每个数据点的异常程度。

相比较而言,基于密度的LOF算法要更简单、直观。它不需要对数据的分布做太多要求,还能量化每个数据点的异常程度(outlierness)。

下面开始正式介绍LOF算法。

LOF 算法

首先,基于密度的离群点检测方法有一个基本假设:非离群点对象周围的密度与其邻域周围的密度类似,而离群点对象周围的密度显著不同于其邻域周围的密度。

什么意思呢?看下面图片感受下。

集群 C1 包含了 400 多个点,集群 C2 包含 100 个点。C1 和 C2 都是一类集群点,区别是 C1 位置比较集中,或者说密度比较大。而像 o1、o2点均为异常点,因为基于我们的假设,这两个点周围的密度显著不同于周围点的密度。

LOF 就是基于密度来判断异常点的,通过给每个数据点都分配一个依赖于邻域密度的离群因子 LOF,进而判断该数据点是否为离群点。 如果LOF>=1 ,则该点为离群点,如果LOF≈1 ,则该点为正常数据点。

那什么是LOF呢?

了解LOF前,必须先知道一下几个基本概念,因为LOF是基于这几个概念而来的。

1. k邻近距离

在距离数据点P最近的几个点中,第K个最近的点跟点P之间的距离称为点P的 K-邻近距离,记为 k-distance (p),公式如下:

点O为距离点P最近的第k个点。

比如上图中,距离点P最近的第4个点是点6。

这里的距离计算可以采用欧式距离、汉明距离、马氏距离等等。比如用欧式距离的计算公式如下:

这里的重点是找到第k个最近的那个点,然后带公式计算距离。

2. k距离领域

以点P为圆心,以k邻近距离dk(P)为半径画圆,这个圆以内的范围就是k距离领域,公式如下:

还是上图所示,假设k=4,那么点 1-6 均是邻域范围内的点。

3. 可达距离

这个可达距离大家需要留意点,点P到点O的第k可达距离:

这里计算P到点O的第k可达距离,但是要以点O为中心,取一个最大值,也就是在点P与O的距离、距离点O最近的第k个点距离中取较大的一个,如图下所示。

p2距离o远,那么两者之间的可达距离就是它们的实际距离。如果距离足够近,如点p1,实际距离将被o的k距离代替。所有p接近o的统计波动d(p,o)可以显著减少,这可以通过参数k来控制,k值越高,同一邻域内的点的可达距离越相似。

4. 局部可达密度

先给出公式。

数据点P的局部可达密度就是基于P的最近邻的平均可达距离的倒数。距离越大,密度越小。

5. 局部异常因子

根据局部可达密度的定义,如果一个数据点跟其他点比较疏远的话,那么显然它的局部可达密度就小。但LOF算法衡量一个数据点的异常程度,并不是看它的绝对局部密度,而是看它跟周围邻近的数据点的相对密度。

这样做的好处是可以允许数据分布不均匀、密度不同的情况。局部异常因子即是用局部相对密度来定义的。数据点p的局部相对密度(局部异常因子)为点p邻域内点的平均局部可达密度跟数据点p的局部可达密度的比值,即:

LOF算法流程

了解了 LOF 的定义以后,整个算法也就显而易见了:

  • 对于每个数据点,计算它与其它所有点的距离,并按从近到远排序;
  • 对于每个数据点,找到它的 k-nearest-neighbor,计算 LOF 得分;
  • 如果LOF值越大,说明越异常,反之如果越小,说明越趋于正常。

LOF优缺点

优点

LOF 的一个优点是它同时考虑了数据集的局部和全局属性。异常值不是按绝对值确定的,而是相对于它们的邻域点密度确定的。当数据集中存在不同密度的不同集群时,LOF表现良好,比较适用于中等高维的数据集。

缺点

LOF算法中关于局部可达密度的定义其实暗含了一个假设,即:不存在大于等于 k 个重复的点。

当这样的重复点存在的时候,这些点的平均可达距离为零,局部可达密度就变为无穷大,会给计算带来一些麻烦。在实际应用时,为了避免这样的情况出现,可以把 k-distance 改为 k-distinct-distance,不考虑重复的情况。或者,还可以考虑给可达距离都加一个很小的值,避免可达距离等于零。

另外,LOF 算法需要计算数据点两两之间的距离,造成整个算法时间复杂度为O(n2)。为了提高算法效率,后续有算法尝试改进。FastLOF (Goldstein,2012)先将整个数据随机的分成多个子集,然后在每个子集里计算 LOF 值。对于那些 LOF 异常得分小于等于 1 的,从数据集里剔除,剩下的在下一轮寻找更合适的 nearest-neighbor,并更新 LOF 值。

Python 实现 LOF

有两个库可以计算LOF,分别是PyODSklearn,下面分别介绍。

使用pyod自带的方法生成200个训练样本和100个测试样本的数据集。正态样本由多元高斯分布生成,异常样本是使用均匀分布生成的。

训练和测试数据集都有 5 个特征,10% 的行被标记为异常。并且在数据中添加了一些随机噪声,让完美分离正常点和异常点变得稍微困难一些。

from pyod.utils.data import generate_data
import numpy as np
X_train, y_train, X_test, y_test = \
        generate_data(n_train=200,
                      n_test=100,
                      n_features=5,
                      contamination=0.1,
                      random_state=3)
X_train = X_train * np.random.uniform(0, 1, size=X_train.shape)
X_test = X_test * np.random.uniform(0,1, size=X_test.shape)

PyOD

下面将训练数据拟合了 LOF 模型并将其应用于合成测试数据。

在 PyOD 中,有两个关键方法:decision_function 和 predict

  • decision_function:返回每一行的异常分数
  • predict:返回一个由 0 和 1 组成的数组,指示每一行被预测为正常 (0) 还是异常值 (1)
from pyod.models.lof import LOF
clf_name = 'LOF'
clf = LOF()
clf.fit(X_train)

test_scores = clf.decision_function(X_test)

roc = round(roc_auc_score(y_test, test_scores), ndigits=4)
prn = round(precision_n_scores(y_test, test_scores), ndigits=4)

print(f'{clf_name} ROC:{roc}, precision @ rank n:{prn}')
>> LOF ROC:0.9656, precision @ rank n:0.8

可以通过 LOF 模型方法查看 LOF 分数的分布。在下图中看到正常数据(蓝色)的分数聚集在 1.0 左右。离群数据点(橙色)的得分均大于 1.0,一般高于正常数据。

Sklearn

scikit-learn中实现 LOF 进行异常检测时,有两种模式选择:异常检测模式 (novelty=False) 和 novelty检测模式 (novelty=True)

在异常检测模式下,只有fit_predict生成离群点预测的方法可用。可以使用negative_outlier_factor_属性检索训练数据的异常值分数,但无法为未见过的数据生成分数。模型会根据contamination参数(默认值为 0.1)自动选择异常值的阈值。

import matplotlib.pyplot as plt

detector = LOF()
scores = detector.fit(X_train).decision_function(X_test)

sns.distplot(scores[y_test==0], label="inlier scores")
sns.distplot(scores[y_test==1], label="outlier scores").set_title("Distribution of Outlier Scores from LOF Detector")
plt.legend()
plt.xlabel("Outlier score")

在novelty检测模式下,只有decision_function用于生成异常值可用。fit_predict方法不可用,但predict方法可用于生成异常值预测。

clf = LocalOutlierFactor(novelty=True)
clf = clf.fit(X_train)
test_scores = clf.decision_function(X_test)

test_scores = -1*test_scores

roc = round(roc_auc_score(y_test, test_scores), ndigits=4)
prn = round(precision_n_scores(y_test, test_scores), ndigits=4)

print(f'{clf_name} ROC:{roc}, precision @ rank n:{prn}')

该模式下模型的异常值分数被反转,异常值的分数低于正常值。

以上就是Python实现异常检测LOF算法的示例代码的详细内容,更多关于Python LOF算法的资料请关注我们其它相关文章!

(0)

相关推荐

  • Java实现 基于密度的局部离群点检测------lof算法

    算法概述 算法:基于密度的局部离群点检测(lof算法) 输入:样本集合D,正整数K(用于计算第K距离) 输出:各样本点的局部离群点因子 过程: 计算每个对象与其他对象的欧几里得距离 对欧几里得距离进行排序,计算第k距离以及第K领域 计算每个对象的可达密度 计算每个对象的局部离群点因子 对每个点的局部离群点因子进行排序,输出. 算法Java源码 本算法包括两个类文件,一个是:DataNode,另一个是:OutlierNodeDetect DataNode的源码 package com.bigdat

  • PHP局部异常因子算法-Local Outlier Factor(LOF)算法的具体实现解析

    这两天在完善自己系统的过程中要实现一个查找异常的功能,于是在朋友的指点下学习并实现了异常点查找的一个基本算法"局部异常因子算法-Local Outlier Factor(LOF)算法". 首先,找相关说明看看这是个什么东西吧. 我参考了这一篇文章: 异常点/离群点检测算法--LOF 大致明白了lof算法是在讲什么,我的理解还有很多不完善的地方,不过还是作为一个初学者写出来供大家批评指正. 根据我的理解大致描述如下: 1. k-distance,点p的第k距离就是距离点p第k远的那个点的

  • 异常点/离群点检测算法——LOF解析

    局部异常因子算法-Local Outlier Factor(LOF)         在数据挖掘方面,经常需要在做特征工程和模型训练之前对数据进行清洗,剔除无效数据和异常数据.异常检测也是数据挖掘的一个方向,用于反作弊.伪基站.金融诈骗等领域. 异常检测方法,针对不同的数据形式,有不同的实现方法.常用的有基于分布的方法,在上.下α分位点之外的值认为是异常值(例如图1),对于属性值常用此类方法.基于距离的方法,适用于二维或高维坐标体系内异常点的判别,例如二维平面坐标或经纬度空间坐标下异常点识别,可

  • Python实现异常检测LOF算法的示例代码

    目录 背景 LOF算法 1.k邻近距离 2.k距离领域 3.可达距离 4.局部可达密度 5.局部异常因子 LOF算法流程 LOF优缺点 Python实现LOF PyOD Sklearn 大家好,我是东哥. 本篇和大家介绍一个经典的异常检测算法:局部离群因子(Local Outlier Factor),简称LOF算法. 背景 Local Outlier Factor(LOF)是基于密度的经典算法(Breuning et. al. 2000), 文章发表于 SIGMOD 2000, 到目前已经有 3

  • Python实现孤立随机森林算法的示例代码

    目录 1 简介 2 孤立随机森林算法 2.1 算法概述 2.2 原理介绍 2.3 算法步骤 3 参数讲解 4 Python代码实现 5 结果 1 简介 孤立森林(isolation Forest)是一种高效的异常检测算法,它和随机森林类似,但每次选择划分属性和划分点(值)时都是随机的,而不是根据信息增益或基尼指数来选择. 2 孤立随机森林算法 2.1 算法概述 Isolation,意为孤立/隔离,是名词,其动词为isolate,forest是森林,合起来就是“孤立森林”了,也有叫“独异森林”,好

  • Python+OpenCV实现分水岭分割算法的示例代码

    目录 前言 1.使用分水岭算法进行分割 2.Watershed与random walker分割对比 前言 分水岭算法是用于分割的经典算法,在提取图像中粘连或重叠的对象时特别有用,例如下图中的硬币. 使用传统的图像处理方法,如阈值和轮廓检测,我们将无法从图像中提取每一个硬币,但通过利用分水岭算法,我们能够检测和提取每一个硬币. 在使用分水岭算法时,我们必须从用户定义的标记开始.这些标记可以通过点击手动定义,或者我们可以使用阈值和/或形态学操作等方法自动或启发式定义它们. 基于这些标记,分水岭算法将

  • Python实现定时检测网站运行状态的示例代码

    通过定时的检测网站的状态,通常检测地址为网站的域名,如果链接的状态码不是200,那么,就将对其进行下线处理,在特定时间后对其进行二次探测状态,如果符合将其上线,以前使用的创宇云的监控,但是功能比较单一,无法满足需求,近期使用Python来实现这一功能,后期将编写监控模块,并进行代码开源或搭建公共服务器. 本次抒写的是链接状态码获取,可以一应用在网站监控,友情链接监控等方面,及时作出提醒预警.状态处理等,方便网站优化.本次使用了python的requests.datatime.BlockingSc

  • Python和Matlab实现蝙蝠算法的示例代码

    目录 1前言 2 蝙蝠算法原理细讲 3 详细步骤 4Python实现 4.1代码 4.2结果 5Matlab实现 5.1 代码 5.2 结果 5.3 展望 1 前言 蝙蝠算法是2010年杨教授基于群体智能提出的启发式搜索算法,是一种搜索全局最优解的有效方法.该算法基于迭代优化,初始化为一组随机解,然后迭代搜寻最优解,且在最优解周围通过随机飞行产生局部新解,加强局部搜索速度.该算法具有实现简单.参数少等特点. 该算法主要用于目标函数寻优,基于蝙蝠种群利用产生的声波搜索猎物和控制飞行方向的特征来实现

  • Python&Matlab实现灰狼优化算法的示例代码

    目录 1 灰狼优化算法基本思想 2 灰狼捕食猎物过程 2.1 社会等级分层 2.2 包围猎物 2.3 狩猎 2.4 攻击猎物 2.5 寻找猎物 3 实现步骤及程序框图 3.1 步骤 3.2 程序框图 4 Python代码实现 5 Matlab实现 1 灰狼优化算法基本思想 灰狼优化算法是一种群智能优化算法,它的独特之处在于一小部分拥有绝对话语权的灰狼带领一群灰狼向猎物前进.在了解灰狼优化算法的特点之前,我们有必要了解灰狼群中的等级制度. 灰狼群一般分为4个等级:处于第一等级的灰狼用α表示,处于第

  • Python实现12种降维算法的示例代码

    目录 为什么要进行数据降维 数据降维原理 主成分分析(PCA)降维算法 其它降维算法及代码地址 1.KPCA(kernel PCA) 2.LDA(Linear Discriminant Analysis) 3.MDS(multidimensional scaling) 4.ISOMAP 5.LLE(locally linear embedding) 6.t-SNE 7.LE(Laplacian Eigenmaps) 8.LPP(Locality Preserving Projections) 网

  • Python 实现大整数乘法算法的示例代码

    我们平时接触的长乘法,按位相乘,是一种时间复杂度为 O(n ^ 2) 的算法.今天,我们来介绍一种时间复杂度为 O (n ^ log 3) 的大整数乘法(log 表示以 2 为底的对数). 介绍原理 karatsuba 算法要求乘数与被乘数要满足以下几个条件,第一,乘数与被乘数的位数相同:第二,乘数与被乘数的位数应为  2 次幂,即为 2 ^ 2,  2 ^ 3, 2 ^ 4, 2 ^ n 等数值. 下面我们先来看几个简单的例子,并以此来了解 karatsuba 算法的使用方法. 两位数相乘 我

  • Python 使用Opencv实现目标检测与识别的示例代码

    在上章节讲述到图像特征检测与匹配 ,本章节是讲述目标检测与识别.后者是在前者的基础上进一步完善. 在本章中,我们使用HOG算法,HOG和SIFT.SURF同属一种类型的描述符.功能代码如下: import cv2 def is_inside(o, i): ox, oy, ow, oh = o ix, iy, iw, ih = i # 如果符合条件,返回True,否则返回False return ox > ix and oy > iy and ox + ow < ix + iw and o

  • Python实现曲线点抽稀算法的示例

    本文介绍了Python实现曲线点抽稀算法的示例,分享给大家,具体如下: 目录 何为抽稀 道格拉斯-普克(Douglas-Peuker)算法 垂距限值法 最后 正文 何为抽稀 在处理矢量化数据时,记录中往往会有很多重复数据,对进一步数据处理带来诸多不便.多余的数据一方面浪费了较多的存储空间,另一方面造成所要表达的图形不光滑或不符合标准.因此要通过某种规则,在保证矢量曲线形状不变的情况下, 最大限度地减少数据点个数,这个过程称为抽稀. 通俗的讲就是对曲线进行采样简化,即在曲线上取有限个点,将其变为折

随机推荐