python 计算概率密度、累计分布、逆函数的例子

计算概率分布的相关参数时,一般使用 scipy 包,常用的函数包括以下几个:

pdf:连续随机分布的概率密度函数

pmf:离散随机分布的概率密度函数

cdf:累计分布函数

百分位函数(累计分布函数的逆函数)

生存函数的逆函数(1 - cdf 的逆函数)

函数里面不仅能跟一个数据,还能跟一个数组。下面用正态分布举例说明:

>>> import scipy.stats as st

>>> st.norm.cdf(0) # 标准正态分布在 0 处的累计分布概率值
0.5

>>> st.norm.cdf([-1, 0, 1])# 标准正态分布分别在 -1, 0, 1 处的累计分布概率值
array([0.15865525, 0.5, 0.84134475])

>>> st.norm.pdf(0) # 标准正态分布在 0 处的概率密度值
0.3989422804014327

>>> st.norm.ppf(0.975)# 标准正态分布在 0.975 处的逆函数值
1.959963984540054

>>> st.norm.lsf(0.975)# 标准正态分布在 0.025 处的生存函数的逆函数值
1.959963984540054

对于非标准正态分布,通过更改参数 loc 与 scale 来改变均值与标准差:

>>> st.norm.cdf(0, loc=2, scale=1) # 均值为 2,标准差为 1 的正态分布在 0 处的累计分布概率值
0.022750131948179195

对于其他随机分布,可能更改的参数不一样,具体需要查官方文档。下面我们举一些常用分布的例子:

>>> st.binom.pmf(4, n=100, p=0.05) # 参数值 n=100, p=0.05 的二项分布在 4 处的概率密度值
0.17814264156968956

>>> st.geom.pmf(4, p=0.05) # 参数值 p=0.05 的几何分布在 4 处的概率密度值
0.04286875

>>> st.poisson.pmf(2, mu=3) # 参数值 mu=3 的泊松分布在 2 处的概率密度值
0.22404180765538775

>>> st.chi2.ppf(0.95, df=10) # 自由度为 10 的卡方分布在 0.95 处的逆函数值
18.307038053275146

>>> st.t.ppf(0.975, df=10) # 自由度为 10 的 t 分布在 0.975 处的逆函数值
2.2281388519649385

>>> st.f.ppf(0.95, dfn=2, dfd=12) # 自由度为 2, 12 的 F 分布在 0.95 处的逆函数值
3.8852938346523933

补充拓展:给定概率密度,生成随机数 python实现

实现的方法可以不止一种:

rejection sampling

invert the cdf

Metropolis Algorithm (MCMC)

本篇介绍根据累积概率分布函数的逆函数(2:invert the CDF)生成的方法。

自己的理解不一定正确,有错误望指正。

目标:

已知 y=pdf(x),现想由给定的pdf, 生成对应分布的x

PDF是概率分布函数,对其积分或者求和可以得到CDF(累积概率分布函数),PDF积分或求和的结果始终为1

步骤(具体解释后面会说):

1、根据pdf得到cdf

2、由cdf得到inverse of the cdf

3、对于给定的均匀分布[0,1),带入inverse cdf,得到的结果即是我们需要的x

求cdf逆函数的具体方法:

对于上面的第二步,可以分成两类:

1、当CDF的逆函数好求时,直接根据公式求取,

2、反之当CDF的逆函数不好求时,用数值模拟方法

自己的理解:为什么需要根据cdf的逆去获得x?

原因一:

因为cdf是单调函数因此一定存在逆函数(cdf是s型函数,而pdf则不一定,例如正态分布,不单调,对于给定的y,可能存在两个对应的x,就不可逆)

原因二:

这仅是我自己的直观理解,根据下图所示(左上为pdf,右上为cdf)

由步骤3可知,我们首先生成[0,1)的均匀随机数,此随机数作为cdf的y,去映射到cdf的x(若用cdf的逆函数表示则是由x映射到y),可以参考上图的右上,既然cdf的y是均匀随机的,那么对于cdf中同样范围的x,斜率大的部分将会有更大的机会被映射,因为对应的y范围更大(而y是随即均匀分布的),那么,cdf的斜率也就等同于pdf的值,这正好符合若x的pdf较大,那么有更大的概率出现(即重复很多次后,该x会出现的次数最多)

代码实现——方法一,公式法

import numpy as np
import math
import random
import matplotlib.pyplot as plt
import collections

count_dict = dict()
bin_count = 20

def inverseCDF():
 """
 return the x value in PDF
 """
 uniform_random = random.random()
 return inverse_cdf(uniform_random)

def pdf(x):
 return 2 * x

# cdf = x^2, 其逆函数很好求,因此直接用公式法
def inverse_cdf(x):
 return math.sqrt(x)

def draw_pdf(D):
	global bin_count
 D = collections.OrderedDict(sorted(D.items()))
 plt.bar(range(len(D)), list(D.values()), align='center')
 # 因为映射bin的时候采用的floor操作,因此加上0.5
 value_list = [(key + 0.5) / bin_count for key in D.keys()]
 plt.xticks(range(len(D)), value_list)
 plt.xlabel('x', fontsize=5)
 plt.ylabel('counts', fontsize=5)
 plt.title('counting bits')
 plt.show()

for i in range(90000):
 x = inverseCDF()
 # 用bin去映射,否则不好操作
 bin = math.floor(x * bin_count) # type(bin): int
 count_dict[bin] = count_dict.get(bin, 0) + 1

draw_pdf(count_dict)

结果:

代码实现——方法二,数值法

数值模拟cdf的关键是创建lookup table,

table的size越大则结果越真实(即区间划分的个数)

import numpy as np
import math
import random
import matplotlib.pyplot as plt
import collections

lookup_table_size = 40
CDFlookup_table = np.zeros((lookup_table_size))

count_dict = dict()
bin_count = 20

def inverse_cdf_numerically(y):
 global lookup_table_size
 global CDFlookup_table
 value = 0.0
 for i in range(lookup_table_size):
  x = i * 1.0 / (lookup_table_size - 1)
  value += pdf2(x)
  CDFlookup_table[i] = value
 CDFlookup_table /= value # normalize the cdf

 if y < CDFlookup_table[0]:
  t = y / CDFlookup_table[0]
  return t / lookup_table_size
 index = -1
 for j in range(lookup_table_size):
  if CDFlookup_table[j] >= y:
   index = j
   break
 # linear interpolation
 t = (y - CDFlookup_table[index - 1]) / \
  (CDFlookup_table[index] - CDFlookup_table[index - 1])
 fractional_index = index + t # 因为index从0开始,所以不是 (index-1)+t
 return fractional_index / lookup_table_size

def inverseCDF():
 """
 return the x value in PDF
 """
 uniform_random = random.random()
 return inverse_cdf_numerically(uniform_random)

def pdf2(x):
 return (x * x * x - 10.0 * x * x + 5.0 * x + 11.0) / (10.417)

def draw_pdf(D):
 global bin_count
 D = collections.OrderedDict(sorted(D.items()))
 plt.bar(range(len(D)), list(D.values()), align='center')
 value_list = [(key + 0.5) / bin_count for key in D.keys()]
 plt.xticks(range(len(D)), value_list)
 plt.xlabel('x', fontsize=5)
 plt.ylabel('counts', fontsize=5)
 plt.title('counting bits')
 plt.show()

for i in range(90000):
 x = inverseCDF()
 bin = math.floor(x * bin_count) # type(bin): int
 count_dict[bin] = count_dict.get(bin, 0) + 1

draw_pdf(count_dict)

真实函数与模拟结果

扩展:生成伯努利、正太分布

import numpy as np
import matplotlib.pyplot as plt
"""
reference:
https://blog.demofox.org/2017/07/25/counting-bits-the-normal-distribution/
"""

def plot_bar_x():
 # this is for plotting purpose
 index = np.arange(counting.shape[0])
 plt.bar(index, counting)
 plt.xlabel('x', fontsize=5)
 plt.ylabel('counts', fontsize=5)
 plt.title('counting bits')
 plt.show()

# if dice_side=2, is binomial distribution
# if dice_side>2 , is multinomial distribution
dice_side = 2
# if N becomes larger, then multinomial distribution will more like normal distribution
N = 100

counting = np.zeros(((dice_side - 1) * N + 1))

for i in range(30000):
 sum = 0
 for j in range(N):
  dice_result = np.random.randint(0, dice_side)
  sum += dice_result

 counting[sum] += 1

# normalization
counting /= np.sum(counting)
plot_bar_x()

以上这篇python 计算概率密度、累计分布、逆函数的例子就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • Python数据可视化:泊松分布详解

    一个服从泊松分布的随机变量X,表示在具有比率参数(rate parameter)λ的一段固定时间间隔内,事件发生的次数.参数λ告诉你该事件发生的比率.随机变量X的平均值和方差都是λ. 代码实现: # Poisson分布 x = np.random.poisson(lam=5, size=10000) # lam为λ size为k pillar = 15 a = plt.hist(x, bins=pillar, normed=True, range=[0, pillar], color='g',

  • Python数据可视化:幂律分布实例详解

    1.公式推导 对幂律分布公式: 对公式两边同时取以10为底的对数: 所以对于幂律公式,对X,Y取对数后,在坐标轴上为线性方程. 2.可视化 从图形上来说,幂律分布及其拟合效果: 对X轴与Y轴取以10为底的对数.效果上就是X轴上1与10,与10与100的距离是一样的. 对XY取双对数后,坐标轴上点可以很好用直线拟合.所以,判定数据是否符合幂律分布,只需要对XY取双对数,判断能否用一个直线很好拟合就行.常见的直线拟合效果评估标准有拟合误差平方和.R平方. 3.代码实现 #!/usr/bin/env

  • python 伯努利分布详解

    伯努利分布 是一种离散分布,有两种可能的结果.1表示成功,出现的概率为p(其中0<p<1).0表示失败,出现的概率为q=1-p.这种分布在人工智能里很有用,比如你问机器今天某飞机是否起飞了,它的回复就是Yes或No,非常明确,这个分布在分类算法里使用比较多,因此在这里先学习 一下. 概率分布有两种类型:离散(discrete)概率分布和连续(continuous)概率分布. 离散概率分布也称为概率质量函数(probability mass function).离散概率分布的例子有伯努利分布(B

  • python 计算概率密度、累计分布、逆函数的例子

    计算概率分布的相关参数时,一般使用 scipy 包,常用的函数包括以下几个: pdf:连续随机分布的概率密度函数 pmf:离散随机分布的概率密度函数 cdf:累计分布函数 百分位函数(累计分布函数的逆函数) 生存函数的逆函数(1 - cdf 的逆函数) 函数里面不仅能跟一个数据,还能跟一个数组.下面用正态分布举例说明: >>> import scipy.stats as st >>> st.norm.cdf(0) # 标准正态分布在 0 处的累计分布概率值 0.5 &g

  • 使用python计算三角形的斜边例子

    我就废话不多说了,还是直接看代码吧 def c(a,b): c=a**2+b**2 return ("the right triangle third side's length is"+" " + str(c)) c(3,4) 注:中间的空格符是一对引号加一个空格 补充知识:三角形已知两边一斜角时求第三边的公式 已知三角形中的一个角θ \thetaθ和其对边b bb以及侧边a aa, 第三条边长的计算公式为 证明很简单, 用海伦公式和三角形两边一内角的面积公式,

  • python 计算t分布的双侧置信区间

    如下所示: interval=stats.t.interval(a,b,mean,std) t分布的置信区 间 a:置信水平 b:检验量的自由度 mean:样本均值 std:样本标准差 from scipy import stats import numpy as np x=[10.1,10,9.8,10.5,9.7,10.1,9.9,10.2,10.3,9.9] x1=np.array(x) mean=x1.mean() std=x1.std() interval=stats.t.interv

  • 利用Python计算KS的实例详解

    在金融领域中,我们的y值和预测得到的违约概率刚好是两个分布未知的两个分布.好的信用风控模型一般从准确性.稳定性和可解释性来评估模型. 一般来说.好人样本的分布同坏人样本的分布应该是有很大不同的,KS正好是有效性指标中的区分能力指标:KS用于模型风险区分能力进行评估,KS指标衡量的是好坏样本累计分布之间的差值. 好坏样本累计差异越大,KS指标越大,那么模型的风险区分能力越强. 1.crosstab实现,计算ks的核心就是好坏人的累积概率分布,我们采用pandas.crosstab函数来计算累积概率

  • Python计算字符宽度的方法

    本文实例讲述了Python计算字符宽度的方法.分享给大家供大家参考,具体如下: 最近在用python写一个CLI小程序,其中涉及到计算字符宽度,目标是以友好的方式将一个长字符串截取为等宽的片段. 对于unicode字符,python的len函数可以准确的计算其中所包含的字符个数,但是个数并不代表宽度,如: >>>len(u'你好a') 3 因此无法简单的使用这种方式来计算宽度. GBK decode 首先我想到GBK编码,00–7F范围内的字符是一字节编码,其余是双字节编码,正好与字符的

  • python之pexpect实现自动交互的例子

    Pexpect 是 Expect 语言的一个 Python 实现,是一个用来启动子程序,并使用正则表达式对程序输出做出特定响应,以此实现与其自动交互的 Python 模块. Pexpect 的使用范围很广,可以用来实现与 ssh.ftp .telnet 等程序的自动交互:可以用来自动复制软件安装包并在不同机器自动安装:还可以用来实现软件测试中与命令行交互的自动化. 整体来说大致的流程包括: 运行程序 程序要求人的判断和输入 Expect 通过关键字匹配 根据关键字向程序发送符合的字符 基本使用流

  • python计算无向图节点度的实例代码

    废话不多说了,直接上代码吧: #Copyright (c)2017, 东北大学软件学院学生 # All rightsreserved #文件名称:a.py # 作 者:孔云 #问题描述:统计图中的每个节点的度,并生成度序列 #问题分析:利用networkx.代码如下: import networkx as nx G=nx.random_graphs.barabasi_albert_graph(1000,3)#生成n=1000,m=3的无标度的图 print ("某个节点的度:",G.d

  • Python计算不规则图形面积算法实现解析

    这篇文章主要介绍了Python计算不规则图形面积算法实现解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 介绍:大三上做一个医学影像识别的项目,医生在原图上用红笔标记病灶点,通过记录红色的坐标位置可以得到病灶点的外接矩形,但是后续会涉及到红圈内的面积在外接矩形下的占比问题,有些外接矩形内有多个红色标记,在使用网上的opencv的fillPoly填充效果非常不理想,还有类似python计算任意多边形方法也不理想的情况下,自己探索出的一种效果还不

  • Python实现非正太分布的异常值检测方式

    工作中,我们经常会遇到数据异常,比如说浏览量突增猛降,交易量突增猛降,但是这些数据又不是符合正太分布的,如果用几倍西格玛就不合适,那么我们如何来判断这些变化是否在合理的范围呢? 小白查阅一些资料后,发现可以用箱形图,具体描述如下: 箱形图(英文:Box plot),又称为盒须图.盒式图.盒状图或箱线图,是一种用作显示一组数据分散情况资料的统计图.因型状如箱子而得名.箱形图最大的优点就是不受异常值的影响,能够准确稳定地描绘出数据的离散分布情况,同时也利于数据的清洗. 异常值可以设置为上四分位数的1

  • 使用python 计算百分位数实现数据分箱代码

    对于百分位数,相信大家都比较熟悉,以下解释源引自百度百科. 百分位数,如果将一组数据从小到大排序,并计算相应的累计百分位,则某一百分位所对应数据的值就称为这一百分位的百分位数.可表示为:一组n个观测值按数值大小排列.如,处于p%位置的值称第p百分位数. 因为百分位数是采用等分的方式划分数据,因此也可用此方法进行等频分箱. import pandas as pd import numpy as np import random t=pd.DataFrame(columns=['l','s']) #

随机推荐