关于tf.matmul() 和tf.multiply() 的区别说明

我就废话不多说了,大家还是直接看代码吧~

flyfish

# a
# [[1, 2, 3],
# [4, 5, 6]] a = tf.constant([1, 2, 3, 4, 5, 6], shape=[2, 3])

# b1
# [[ 7, 8],
# [ 9, 10],
# [11, 12]] b1 = tf.constant([7, 8, 9, 10, 11, 12], shape=[3, 2])

#b2
#[[ 7 8 9]
# [10 11 12]] b2 = tf.constant([7, 8, 9, 10, 11, 12], shape=[2, 3])

# c矩阵相乘 第一个矩阵的列数(column)等于第二个矩阵的行数(row)
# [[ 58, 64],
# [139, 154]] c = tf.matmul(a, b1)

# d`数元素各自相乘
#[[ 7 16 27]
# [40 55 72]] d = tf.multiply(a, b2) #维度必须相等 with tf.Session():
 print(d.eval())

关于其他计算

b3 = tf.constant([7, 8, 9,], shape=[1, 3])
tf.multiply(a, b3)
结果是
[[ 7 16 27]
 [28 40 54]]

b4 = tf.constant([7, 8], shape=[2, 1])
tf.multiply(a, b4)
结果是
[[ 7 14 21]
 [32 40 48]]

b5 = tf.constant([7], shape=[1, 1])
tf.multiply(a, b5)

结果是

[[ 7 14 21]
 [28 35 42]]

补充知识:tensor matmul的对3维张量的处理

torch.matmul(a,b)处理的一般是a和b的最后两个维度,假设a的维度为B*F*M,b也为B*F*M, 在对a,b做相乘操作的时候,需要完成对B的维度顺序的变换,通过permute(0, 2, 1)变换为B*M*F。

通过变换后进行torch.matmul(a,b)得到结果为B*F*F,在除了最后两个维度的的之前维度上都被认为是Batch。

示例1:

>>> import torch
>>> a=torch.rand((1000,5,10))
>>> b=torch.rand((1000,10,12))
>>> c=torch.matmul(a,b)
>>> c.shape
torch.Size([1000, 5, 12])

在处理不同维度时,会通过广播来合并除最后两个维度外的其他维度,如对于A*B*F*M与B*M*F的matmul,结果为A*B*F*F

示例2:

>>> a=torch.rand((50,1000,5,10))
>>> b=torch.rand((1000,10,12))
>>> c=torch.matmul(a,b)
>>> c.shape
torch.Size([50, 1000, 5, 12])

以上这篇关于tf.matmul() 和tf.multiply() 的区别说明就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • Python Tensor FLow简单使用方法实例详解

    本文实例讲述了Python Tensor FLow简单使用方法.分享给大家供大家参考,具体如下: 1.基础概念 Tensor表示张量,是一种多维数组的数据结构.Flow代表流,是指张量之间通过计算而转换的过程.TensorFLow通过一个计算图的形式表示编程过程,数据在每个节点之间流动,经过节点加工之后流向下一个节点. 计算图是一个有向图,其组成如下:节点:代表一个操作.边:代表节点之间的数据传递和控制依赖,其中实线代表两个节点之间的数据传递关系,虚线代表两个节点之间存在控制相关. 张量是所有数

  • Python中Numpy mat的使用详解

    前面介绍过用dnarray来模拟,但mat更符合矩阵,这里的mat与Matlab中的很相似.(mat与matrix等同) 基本操作 >>> m= np.mat([1,2,3]) #创建矩阵 >>> m matrix([[1, 2, 3]]) >>> m[0] #取一行 matrix([[1, 2, 3]]) >>> m[0,1] #第一行,第2个数据 2 >>> m[0][1] #注意不能像数组那样取值了 Trace

  • Tensorflow中k.gradients()和tf.stop_gradient()用法说明

    上周在实验室开荒某个代码,看到中间这么一段,对Tensorflow中的stop_gradient()还不熟悉,特此周末进行重新并总结. y = xx + K.stop_gradient(rounded - xx) 这代码最终调用位置在tensoflow.python.ops.gen_array_ops.stop_gradient(input, name=None),关于这段代码为什么这样写的意义在文末给出. [stop_gradient()意义] 用stop_gradient生成损失函数w.r.

  • 关于tf.matmul() 和tf.multiply() 的区别说明

    我就废话不多说了,大家还是直接看代码吧~ flyfish # a # [[1, 2, 3], # [4, 5, 6]] a = tf.constant([1, 2, 3, 4, 5, 6], shape=[2, 3]) # b1 # [[ 7, 8], # [ 9, 10], # [11, 12]] b1 = tf.constant([7, 8, 9, 10, 11, 12], shape=[3, 2]) #b2 #[[ 7 8 9] # [10 11 12]] b2 = tf.constant

  • 将tf.batch_matmul替换成tf.matmul的实现

    我就废话不多说了,大家还是直接看代码吧~ import tensorflow as tf h_doc=tf.placeholder(tf.int32,[None,30,512]) h_query=tf.placeholder(tf.int32,[None,10,512]) temp = tf.matmul(h_doc, h_query, adjoint_b = True) # tf.batch_matmul(h_doc, h_query, adj_y=True) print(temp.get_s

  • 谈一谈数组拼接tf.concat()和np.concatenate()的区别

    废话不多说啦,直接看代码吧! tf.concat t1 = [[1, 2, 3], [4, 5, 6]] t2 = [[7, 8, 9], [10, 11, 12]] tf.concat(0, [t1, t2]) ==> [[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]] tf.concat(1, [t1, t2]) ==> [[1, 2, 3, 7, 8, 9], [4, 5, 6, 10, 11, 12]] # tensor t3 with sh

  • python神经网络tf.name_scope和tf.variable_scope函数区别

    目录 学习前言 两者区别 tf.variable_scope函数 测试代码 1.使用reuse=True共享变量 2.使用AUTO_REUSE共享变量 学习前言 最近在学目标检测……SSD的源码好复杂……看了很多版本的SSD源码,发现他们会使用tf.variable_scope,刚开始我还以为就是tf.name_scope,才发现原来两者是不一样的 两者区别 tf.name_scope()和tf.variable_scope()是两个作用域,一般与两个创建/调用变量的函数tf.variable(

  • tf.truncated_normal与tf.random_normal的详细用法

    本文介绍了tf.truncated_normal与tf.random_normal的详细用法,分享给大家,具体如下: tf.truncated_normal 复制代码 代码如下: tf.truncated_normal(shape, mean=0.0, stddev=1.0, dtype=tf.float32, seed=None, name=None) 从截断的正态分布中输出随机值. 生成的值服从具有指定平均值和标准偏差的正态分布,如果生成的值大于平均值2个标准偏差的值则丢弃重新选择. 在正态

  • tensorflow中tf.slice和tf.gather切片函数的使用

    tf.slice(input_, begin, size, name=None):按照指定的下标范围抽取连续区域的子集 tf.gather(params, indices, validate_indices=None, name=None):按照指定的下标集合从axis=0中抽取子集,适合抽取不连续区域的子集 输出: input = [[[1, 1, 1], [2, 2, 2]], [[3, 3, 3], [4, 4, 4]], [[5, 5, 5], [6, 6, 6]]] tf.slice(

  • TensorFlow中tf.batch_matmul()的用法

    TensorFlow中tf.batch_matmul()用法 如果有两个三阶张量,size分别为 a.shape = [100, 3, 4] b.shape = [100, 4, 5] c = tf.batch_matmul(a, b) 则c.shape = [100, 3, 5] //将每一对 3x4 的矩阵与 4x5 的矩阵分别相乘.batch_size不变 100为张量的batch_size.剩下的两个维度为数据的维度. 不过新版的tensorflow已经移除了上面的函数,使用时换为tf.

  • TensorFlow实现非线性支持向量机的实现方法

    这里将加载iris数据集,创建一个山鸢尾花(I.setosa)的分类器. # Nonlinear SVM Example #---------------------------------- # # This function wll illustrate how to # implement the gaussian kernel on # the iris dataset. # # Gaussian Kernel: # K(x1, x2) = exp(-gamma * abs(x1 - x

  • 用TensorFlow实现多类支持向量机的示例代码

    本文将详细展示一个多类支持向量机分类器训练iris数据集来分类三种花. SVM算法最初是为二值分类问题设计的,但是也可以通过一些策略使得其能进行多类分类.主要的两种策略是:一对多(one versus all)方法:一对一(one versus one)方法. 一对一方法是在任意两类样本之间设计创建一个二值分类器,然后得票最多的类别即为该未知样本的预测类别.但是当类别(k类)很多的时候,就必须创建k!/(k-2)!2!个分类器,计算的代价还是相当大的. 另外一种实现多类分类器的方法是一对多,其为

  • tf.nn.conv2d与tf.layers.conv2d的区别及说明

    目录 tf.nn.conv2d与tf.layers.conv2d的区别 tf.nn.conv2d tf.layers.conv2d tf.nn.conv2d和tf.layers.conv2d的学习 总结 tf.nn.conv2d与tf.layers.conv2d的区别 在写CNN中注意到tensorflow目前有tf.nn.conv2d和tf.layers.conv2d这两个很相似的API. tf.nn.conv2d, 需要自行传入初始化好的filter(四个维度),在初始化filter或者说W

随机推荐