解决Keras 自定义层时遇到版本的问题

在2.2.0版本前,

from keras import backend as K
from keras.engine.topology import Layer

class MyLayer(Layer):

  def __init__(self, output_dim, **kwargs):
    self.output_dim = output_dim
    super(MyLayer, self).__init__(**kwargs)

  def build(self, input_shape):
    # 为该层创建一个可训练的权重
    self.kernel = self.add_weight(name='kernel',
                   shape=(input_shape[1], self.output_dim),
                   initializer='uniform',
                   trainable=True)
    super(MyLayer, self).build(input_shape) # 一定要在最后调用它

  def call(self, x):
    return K.dot(x, self.kernel)

  def compute_output_shape(self, input_shape):
    return (input_shape[0], self.output_dim)

2.2.0 版本时:

from keras import backend as K
from keras.layers import Layer

class MyLayer(Layer):

  def __init__(self, output_dim, **kwargs):
    self.output_dim = output_dim
    super(MyLayer, self).__init__(**kwargs)

  def build(self, input_shape):
    # Create a trainable weight variable for this layer.
    self.kernel = self.add_weight(name='kernel',
                   shape=(input_shape[1], self.output_dim),
                   initializer='uniform',
                   trainable=True)
    super(MyLayer, self).build(input_shape) # Be sure to call this at the end

  def call(self, x):
    return K.dot(x, self.kernel)

  def compute_output_shape(self, input_shape):
    return (input_shape[0], self.output_dim)

如果你遇到:

<module> from keras.engine.base_layer import InputSpec ModuleNotFoundError: No module named 'keras.engine.base_layer'

不妨试试另一种引入!

补充知识:Keras自定义损失函数在场景分类的使用

在做图像场景分类的过程中,需要自定义损失函数,遇到很多坑。Keras自带的损失函数都在losses.py文件中。(以下默认为分类处理)

#losses.py
#y_true是分类的标签,y_pred是分类中预测值(这里指,模型最后一层为softmax层,输出的是每个类别的预测值)
def mean_squared_error(y_true, y_pred):
  return K.mean(K.square(y_pred - y_true), axis=-1)
def mean_absolute_error(y_true, y_pred):
  return K.mean(K.abs(y_pred - y_true), axis=-1)
def mean_absolute_percentage_error(y_true, y_pred):
  diff = K.abs((y_true - y_pred) / K.clip(K.abs(y_true),K.epsilon(),None))
  return 100. * K.mean(diff, axis=-1)
def mean_squared_logarithmic_error(y_true, y_pred):
  first_log = K.log(K.clip(y_pred, K.epsilon(), None) + 1.)
  second_log = K.log(K.clip(y_true, K.epsilon(), None) + 1.)
  return K.mean(K.square(first_log - second_log), axis=-1)
def squared_hinge(y_true, y_pred):
  return K.mean(K.square(K.maximum(1. - y_true * y_pred, 0.)), axis=-1)

这里面简单的来说,y_true就是训练数据的标签,y_pred就是模型训练时经过softmax层的预测值。经过计算,得出损失值。

那么我们要新建损失函数totoal_loss,就要在本文件下,进行新建。

def get_loss(labels,features, alpha,lambda_c,lambda_g,num_classes):
  #由于涉及研究内容,详细代码不做公开
  return loss
#total_loss(y_true,y_pred),y_true代表标签(类别),y_pred代表模型的输出
#( 如果是模型中间层输出,即代表特征,如果模型输出是经过softmax就是代表分类预测值)
#其他有需要的参数也可以写在里面
def total_loss(y_true,y_pred):
    git_loss=get_loss(y_true,y_pred,alpha=0.5,lambda_c=0.001,lambda_g=0.001,num_classes=45)
    return git_loss 

自定义损失函数写好之后,可以进行使用了。这里,我使用交叉熵损失函数和自定义损失函数一起使用。

#这里使用vgg16模型
model = VGG16(input_tensor=image_input, include_top=True,weights='imagenet')
model.summary()
#fc2层输出为特征
last_layer = model.get_layer('fc2').output
#获取特征
feature = last_layer
#softmax层输出为各类的预测值
out = Dense(num_classes,activation = 'softmax',name='predictions')(last_layer)
#该模型有一个输入image_input,两个输出out,feature
custom_vgg_model = Model(inputs = image_input, outputs = [feature,out])
custom_vgg_model.summary()
#优化器,梯度下降
sgd = optimizers.SGD(lr=learn_Rate,decay=decay_Rate,momentum=0.9,nesterov=True)
#这里面,刚才有两个输出,这里面使用两个损失函数,total_loss对应的是fc2层输出的特征
#categorical_crossentropy对应softmax层的损失函数
#loss_weights两个损失函数的权重
custom_vgg_model.compile(loss={'fc2': 'total_loss','predictions': "categorical_crossentropy"},
             loss_weights={'fc2': 1, 'predictions':1},optimizer= sgd,
                   metrics={'predictions': 'accuracy'})
#这里使用dummy1,dummy2做演示,为0
dummy1 = np.zeros((y_train.shape[0],4096))
dummy2 = np.zeros((y_test.shape[0],4096))
#模型的输入输出必须和model.fit()中x,y两个参数维度相同
#dummy1的维度和fc2层输出的feature维度相同,y_train和softmax层输出的预测值维度相同
#validation_data验证数据集也是如此,需要和输出层的维度相同
hist = custom_vgg_model.fit(x = X_train,y = {'fc2':dummy1,'predictions':y_train},batch_size=batch_Sizes,
                epochs=epoch_Times, verbose=1,validation_data=(X_test, {'fc2':dummy2,'predictions':y_test}))

写到这里差不多就可以了,不够详细,以后再做补充。

以上这篇解决Keras 自定义层时遇到版本的问题就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • 使用Keras加载含有自定义层或函数的模型操作

    当我们导入的模型含有自定义层或者自定义函数时,需要使用custom_objects来指定目标层或目标函数. 例如: 我的一个模型含有自定义层"SincConv1D",需要使用下面的代码导入: from keras.models import load_model model = load_model('model.h5', custom_objects={'SincConv1D': SincConv1D}) 如果不加custom_objects指定目标层Layer,则会出现以下报错:

  • 升级keras解决load_weights()中的未定义skip_mismatch关键字问题

    1.问题描述 在用yolov3训练自己的数据集时,尝试加载预训练的权重,在冻结前154层的基础上,利用自己的数据集finetune. 出现如下错误: load_weights(),got an unexpected keyword argument skip_mismatch 2.解决方法 因为keras旧版本没有这一定义,在新的版本中有这一关键字的定义,因此,更新keras版本至2.1.5即可解决. source activate env pip uninstall keras pip ins

  • 完美解决keras保存好的model不能成功加载问题

    前两天调用之前用keras(tensorflow做后端)训练好model,却意外发现报错了!!之前从来没有过报错!!错误内容粘贴如下: File "h5py_objects.pyx", line 54, in h5py._objects.with_phil.wrapper (C:\Minonda\conda-bld\h5py_1496885653697\work\h5py_objects.c:2867) File "h5py_objects.pyx", line 5

  • 解决Keras 与 Tensorflow 版本之间的兼容性问题

    在利用Keras进行实验的时候,后端为Tensorflow,出现了以下问题: 1. 服务器端激活Anaconda环境跑程序时,实验结果很差. 环境:tensorflow 1.4.0,keras 2.1.5 2. 服务器端未激活Anaconda环境跑程序时,实验结果回到正常值. 环境:tensorflow 1.7.0,keras 2.0.8 3. 自己PC端跑相同程序时,实验结果回到正常值. 环境:tensorflow 1.6.0,keras 2.1.5 怀疑实验结果的异常性是由于Keras和Te

  • 解决Keras 自定义层时遇到版本的问题

    在2.2.0版本前, from keras import backend as K from keras.engine.topology import Layer class MyLayer(Layer): def __init__(self, output_dim, **kwargs): self.output_dim = output_dim super(MyLayer, self).__init__(**kwargs) def build(self, input_shape): # 为该层

  • 解决Pytorch自定义层出现多Variable共享内存错误问题

    错误信息: RuntimeError: in-place operations can be only used on variables that don't share storage with any other variables, but detected that there are 4 objects sharing it 自动求导是很方便, 但是想想, 如果两个Variable共享内存, 再对这个共享的内存的数据进行修改, 就会引起错误! 一般是由于 inplace操作或是ind

  • 解决Keras的自定义lambda层去reshape张量时model保存出错问题

    前几天忙着参加一个AI Challenger比赛,一直没有更新博客,忙了将近一个月的时间,也没有取得很好的成绩,不过这这段时间内的确学到了很多,就在决赛结束的前一天晚上,准备复现使用一个新的网络UPerNet的时候出现了一个很匪夷所思,莫名其妙的一个问题.谷歌很久都没有解决,最后在一个日语网站上看到了解决方法. 事后想想,这个问题在后面搭建网络的时候会很常见,但是网上却没有人提出解决办法,So, I think that's very necessary for me to note this.

  • 解决keras加入lambda层时shape的问题

    使用keras时,加入keras的lambda层以实现自己定义的操作.但是,发现操作结果的shape信息有问题. 我的后端是theano,使用了sum操作. 比如输入时,shape为(32,28,28),其中32为batch大小. 此时对应的ndim应该等于3. 但是,lambda处理后结果显示_keras_shape为(32,28,28),而ndim却是2. 这导致后边各项操作都会出现问题. 此处sum函数加入参数keepdims=True即可. 此注意keras中的各种层几乎都不用去理会ba

  • Keras自定义实现带masking的meanpooling层方式

    Keras确实是一大神器,代码可以写得非常简洁,但是最近在写LSTM和DeepFM的时候,遇到了一个问题:样本的长度不一样.对不定长序列的一种预处理方法是,首先对数据进行padding补0,然后引入keras的Masking层,它能自动对0值进行过滤. 问题在于keras的某些层不支持Masking层处理过的输入数据,例如Flatten.AveragePooling1D等等,而其中meanpooling是我需要的一个运算.例如LSTM对每一个序列的输出长度都等于该序列的长度,那么均值运算就只应该

  • 解决Keras 中加入lambda层无法正常载入模型问题

    刚刚解决了这个问题,现在记录下来 问题描述 当使用lambda层加入自定义的函数后,训练没有bug,载入保存模型则显示Nonetype has no attribute 'get' 问题解决方法: 这个问题是由于缺少config信息导致的.lambda层在载入的时候需要一个函数,当使用自定义函数时,模型无法找到这个函数,也就构建不了. m = load_model(path,custom_objects={"reduce_mean":self.reduce_mean,"sli

  • keras load model时出现Missing Layer错误的解决方式

    问题描述:训练结束后,保存model为hdf5和yaml格式的文件 yamlFilename = os.path.join(dir,filename) yamlModel = model.toyaml() with open(yamlFilename, "w") as yamlFile: yamlFile.write(yamlModel) 随后load model with open(chkptFilename,'r') as f: model_yaml = f.read() mode

  • jQuery对话框插件ArtDialog在双击遮罩层时出现关闭现象的解决方法

    本文实例讲述了jQuery对话框插件ArtDialog在双击遮罩层时出现关闭现象的解决方法.分享给大家供大家参考,具体如下: 大家都知道,ArtDialog是一款非常不错的.轻量级的.基于jQuery的对话框插件,深受大家的追捧,大伙可以到一下地址进行下载: https://code.google.com/p/artdialog/ https://github.com/aui/artDialog 截止到2014年9月17日,已经有几个重大的版本v4.1.7.v5.0.4和v6.0.2,其中4.x

随机推荐