PyTorch加载预训练模型实例(pretrained)
使用预训练模型的代码如下:
# 加载预训练模型 resNet50 = models.resnet50(pretrained=True) ResNet50 = ResNet(Bottleneck, [3, 4, 6, 3], num_classes=2) # 读取参数 pretrained_dict = resNet50.state_dict() model_dict = ResNet50.state_dict() # 将pretained_dict里不属于model_dict的键剔除掉 pretrained_dict = {k: v for k, v in pretrained_dict.items() if k in model_dict} # 更新现有的model_dict model_dict.update(pretrained_dict) # 加载真正需要的state_dict ResNet50.load_state_dict(model_dict)
以上这篇PyTorch加载预训练模型实例(pretrained)就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。
相关推荐
-
pytorch载入预训练模型后,实现训练指定层
1.有了已经训练好的模型参数,对这个模型的某些层做了改变,如何利用这些训练好的模型参数继续训练: pretrained_params = torch.load('Pretrained_Model') model = The_New_Model(xxx) model.load_state_dict(pretrained_params.state_dict(), strict=False) strict=False 使得预训练模型参数中和新模型对应上的参数会被载入,对应不上或没有的参数被抛弃. 2.
-
pytorch加载自定义网络权重的实现
在将自定义的网络权重加载到网络中时,报错: AttributeError: 'dict' object has no attribute 'seek'. You can only torch.load from a file that is seekable. Please pre-load the data into a buffer like io.BytesIO and try to load from it instead. 我们一步一步分析. 模型网络权重保存额代码是:torch.sa
-
PyTorch使用cpu加载模型运算方式
没gpu没cuda支持的时候加载模型到cpu上计算 将 model = torch.load(path, map_location=lambda storage, loc: storage.cuda(device)) 改为 model = torch.load(path, map_location='cpu') 然后删掉所有变量后面的.cuda()方法 以上这篇PyTorch使用cpu加载模型运算方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们.
-
解决Pytorch 加载训练好的模型 遇到的error问题
这是一个非常愚蠢的错误 debug的时候要好好看error信息 提醒自己切记好好对待error!切记!切记! -----------------------分割线---------------- pytorch 已经非常友好了 保存模型和加载模型都只需要一条简单的命令 #保存整个网络和参数 torch.save(your_net, 'save_name.pkl') #加载保存的模型 net = torch.load('save_name.pkl') 因为我比较懒我就想直接把整个网络都保存下来,然
-
pytorch 加载(.pth)格式的模型实例
有一些非常流行的网络如 resnet.squeezenet.densenet等在pytorch里面都有,包括网络结构和训练好的模型. pytorch自带模型网址:https://pytorch-cn.readthedocs.io/zh/latest/torchvision/torchvision-models/ 按官网加载预训练好的模型: import torchvision.models as models # pretrained=True就可以使用预训练的模型 resnet18 = mod
-
基于pytorch的保存和加载模型参数的方法
当我们花费大量的精力训练完网络,下次预测数据时不想再(有时也不必再)训练一次时,这时候torch.save(),torch.load()就要登场了. 保存和加载模型参数有两种方式: 方式一: torch.save(net.state_dict(),path): 功能:保存训练完的网络的各层参数(即weights和bias) 其中:net.state_dict()获取各层参数,path是文件存放路径(通常保存文件格式为.pt或.pth) net2.load_state_dict(torch.loa
-
PyTorch加载预训练模型实例(pretrained)
使用预训练模型的代码如下: # 加载预训练模型 resNet50 = models.resnet50(pretrained=True) ResNet50 = ResNet(Bottleneck, [3, 4, 6, 3], num_classes=2) # 读取参数 pretrained_dict = resNet50.state_dict() model_dict = ResNet50.state_dict() # 将pretained_dict里不属于model_dict的键剔除掉 pret
-
pytorch加载预训练模型与自己模型不匹配的解决方案
pytorch中如果自己搭建网络并且加载别人的与训练模型的话,如果模型和参数不严格匹配,就可能会出问题,接下来记录一下我的解决方法. 两个有序字典找不同 模型的参数和pth文件的参数都是有序字典(OrderedDict),把字典中的键转为列表就可以在for循环里迭代找不同了. model = ResNet18(1) model_dict1 = torch.load('resnet18.pth') model_dict2 = model.state_dict() model_list1 = lis
-
Tensorflow加载预训练模型和保存模型的实例
使用tensorflow过程中,训练结束后我们需要用到模型文件.有时候,我们可能也需要用到别人训练好的模型,并在这个基础上再次训练.这时候我们需要掌握如何操作这些模型数据.看完本文,相信你一定会有收获! 1 Tensorflow模型文件 我们在checkpoint_dir目录下保存的文件结构如下: |--checkpoint_dir | |--checkpoint | |--MyModel.meta | |--MyModel.data-00000-of-00001 | |--MyModel.in
-
Keras 实现加载预训练模型并冻结网络的层
在解决一个任务时,我会选择加载预训练模型并逐步fine-tune.比如,分类任务中,优异的深度学习网络有很多. ResNet, VGG, Xception等等... 并且这些模型参数已经在imagenet数据集中训练的很好了,可以直接拿过来用. 根据自己的任务,训练一下最后的分类层即可得到比较好的结果.此时,就需要"冻结"预训练模型的所有层,即这些层的权重永不会更新. 以Xception为例: 加载预训练模型: from tensorflow.python.keras.applicat
-
Pytorch加载部分预训练模型的参数实例
前言 自从从深度学习框架caffe转到Pytorch之后,感觉Pytorch的优点妙不可言,各种设计简洁,方便研究网络结构修改,容易上手,比TensorFlow的臃肿好多了.对于深度学习的初学者,Pytorch值得推荐.今天主要主要谈谈Pytorch是如何加载预训练模型的参数以及代码的实现过程. 直接加载预选脸模型 如果我们使用的模型和预训练模型完全一样,那么我们就可以直接加载别人的模型,还有一种情况,我们在训练自己模型的过程中,突然中断了,但只要我们保存了之前的模型的参数也可以使用下面的代码直
-
pytorch加载自己的图像数据集实例
之前学习深度学习算法,都是使用网上现成的数据集,而且都有相应的代码.到了自己开始写论文做实验,用到自己的图像数据集的时候,才发现无从下手 ,相信很多新手都会遇到这样的问题. 参考文章https://www.jb51.net/article/177613.htm 下面代码实现了从文件夹内读取所有图片,进行归一化和标准化操作并将图片转化为tensor.最后读取第一张图片并显示. # 数据处理 import os import torch from torch.utils import data fr
-
vue进行图片的预加载watch用法实例讲解
watch应用场景 我想信图片预加载大家肯定都有接触过,当图片量大的时候,为了保证页面图片都加载出来的时候,我们才把主页面给显示出来,再进行一些ajax请求,或者逻辑操作 那此时你用computed对这种监听一个数据然后进行一系列逻辑操作和ajax请求,那watch再适合不过了,如果用computed的话那你连实现都实现不了,只有用watch监听 <template> <div v-show=show> <img src="https://img.alicdn.co
-
PyTorch加载自己的数据集实例详解
数据预处理在解决深度学习问题的过程中,往往需要花费大量的时间和精力. 数据处理的质量对训练神经网络来说十分重要,良好的数据处理不仅会加速模型训练, 更会提高模型性能.为解决这一问题,PyTorch提供了几个高效便捷的工具, 以便使用者进行数据处理或增强等操作,同时可通过并行化加速数据加载. 数据集存放大致有以下两种方式: (1)所有数据集放在一个目录下,文件名上附有标签名,数据集存放格式如下: root/cat_dog/cat.01.jpg root/cat_dog/cat.02.jpg ...
随机推荐
- js简单的点击返回顶部效果实现方法
- Android实现QQ图片说说照片选择效果
- js读取本地excel文档数据的代码
- js修改onclick动作的四种方法(推荐)
- 删除特殊字符和限定用户输入长度的示例代码
- 利用laravel搭建一个迷你博客实战教程
- phpmyadmin显示MySQL数据表“使用中” 修复后依然无效的解决方法
- PHP 抓取新浪读书频道的小说并生成txt电子书的代码
- Python类定义和类继承详解
- c#开发word批量转pdf源码分享
- C#连接到sql server2008数据库的实例代码
- javascript实现的图片预览功能
- C++设计模式之访问者模式
- redis2.8配置文件中文翻译版
- JavaScript 输出显示内容(document.write、alert、innerHTML、console.log)
- 复制网页内容,粘贴之后自动加上网址的实现方法(脚本之家特别整理)
- javascript之学会吝啬 精简代码
- C#装饰器模式(Decorator Pattern)实例教程
- Android实现固定屏幕显示的方法
- 基于Vue实现的多条件筛选功能的详解(类似京东和淘宝功能)