python不使用for计算两组、多个矩形两两间的iou方式

解决问题: 不使用for计算两组、多个矩形两两间的iou

使用numpy广播的方法,在python程序中并不建议使用for语句,python中的for语句耗时较多,如果使用numpy广播的思想将会提速不少。

代码:

def calc_iou(bbox1, bbox2):
 if not isinstance(bbox1, np.ndarray):
  bbox1 = np.array(bbox1)
 if not isinstance(bbox2, np.ndarray):
  bbox2 = np.array(bbox2)
 xmin1, ymin1, xmax1, ymax1, = np.split(bbox1, 4, axis=-1)
 xmin2, ymin2, xmax2, ymax2, = np.split(bbox2, 4, axis=-1)

 area1 = (xmax1 - xmin1) * (ymax1 - ymin1)
 area2 = (xmax2 - xmin2) * (ymax2 - ymin2)

 ymin = np.maximum(ymin1, np.squeeze(ymin2, axis=-1))
 xmin = np.maximum(xmin1, np.squeeze(xmin2, axis=-1))
 ymax = np.minimum(ymax1, np.squeeze(ymax2, axis=-1))
 xmax = np.minimum(xmax1, np.squeeze(xmax2, axis=-1))

 h = np.maximum(ymax - ymin, 0)
 w = np.maximum(xmax - xmin, 0)
 intersect = h * w

 union = area1 + np.squeeze(area2, axis=-1) - intersect
 return intersect / union

程序中输入为多个矩形[xmin, ymin, xmax,ymax]格式的数组或者list,输出为numpy格式,例:输入的shape为(3, 4)、(5,4)则输出为(3, 5)各个位置为boxes间相互的iou值。后面会卡一个iou的阈值,然后就可以将满足条件的索引取出。如:

def delete_bbox(bbox1, bbox2, roi_bbox1, roi_bbox2, class1, class2, idx1, idx2, iou_value):
 idx = np.where(iou_value > 0.4)
 left_idx = idx[0]
 right_idx = idx[1]
 left = roi_bbox1[left_idx]
 right = roi_bbox2[right_idx]
 xmin1, ymin1, xmax1, ymax1, = np.split(left, 4, axis=-1)
 xmin2, ymin2, xmax2, ymax2, = np.split(right, 4, axis=-1)
 left_area = (xmax1 - xmin1) * (ymax1 - ymin1)
 right_area = (xmax2 - xmin2) * (ymax2 - ymin2)
 left_idx = left_idx[np.squeeze(left_area < right_area, axis=-1)]#小的被删
 right_idx = right_idx[np.squeeze(left_area > right_area, axis=-1)]

 bbox1 = np.delete(bbox1, idx1[left_idx], 0)
 class1 = np.delete(class1, idx1[left_idx])
 bbox2 = np.delete(bbox2, idx2[right_idx], 0)
 class2 = np.delete(class2, idx2[right_idx])

 return bbox1, bbox2, class1, class2

IOU计算原理:

ymin = np.maximum(ymin1, np.squeeze(ymin2, axis=-1))

xmin = np.maximum(xmin1, np.squeeze(xmin2, axis=-1))

ymax = np.minimum(ymax1, np.squeeze(ymax2, axis=-1))

xmax = np.minimum(xmax1, np.squeeze(xmax2, axis=-1))

h = np.maximum(ymax - ymin, 0)

w = np.maximum(xmax - xmin, 0)

intersect = h * w

计算矩形间min的最大值,max的最小值,如果ymax-ymin值大于0则如左图所示,如果小于0则如右图所示

以上这篇python不使用for计算两组、多个矩形两两间的iou方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • python实现的Iou与Giou代码

    最近看了网上很多博主写的iou实现方法,但Giou的代码似乎比较少,于是便自己写了一个,新手上路,如有错误请指正,话不多说,上代码: def Iou(rec1,rec2): x1,x2,y1,y2 = rec1 #分别是第一个矩形左右上下的坐标 x3,x4,y3,y4 = rec2 #分别是第二个矩形左右上下的坐标 area_1 = (x2-x1)*(y1-y2) area_2 = (x4-x3)*(y3-y4) sum_area = area_1 + area_2 w1 = x2 - x1#第

  • Python计算机视觉里的IOU计算实例

    其中x1,y1;x2,y2分别表示两个矩形框的中心点 def calcIOU(x1, y1, w1, h1, x2, y2, w2, h2): if((abs(x1 - x2) < ((w1 + w2)/ 2.0)) and (abs(y1-y2) < ((h1 + h2)/2.0))): left = max((x1 - (w1 / 2.0)), (x2 - (w2 / 2.0))) upper = max((y1 - (h1 / 2.0)), (y2 - (h2 / 2.0))) righ

  • 浅谈Python3实现两个矩形的交并比(IoU)

    一.前言 因为最近刚好被问到这个问题,但是自己当时特别懵逼,导致没有做出来.所以下来后自己Google了很多IoU的博客,但是很多博客要么过于简略,要么是互相转载的,有一些博客图和代码还有点问题,也导致自己这个萌新走了不少弯路.所以自己重新整理了看的博客,力求以更简单的方式展现这个问题的解答办法,方便日后自己回顾.如果朋友们觉得写的有问题的地方,非常欢迎大家在下面留言交流,避免因为我的问题导致读者走弯路. 二.交并比的概念及应用 假设平面坐标中有一个矩形,并且这个矩形的长和宽均分别与x轴和y轴平

  • python计算二维矩形IOU实例

    计算交并比:交的面积除以并的面积. 要求矩形框的长和宽应该平行于图片框.不然不能用这样的公式计算. 原理,从一维上来理解:两条红线的距离之和减去黑色线之间的距离就是相交的距离.两条红线之和很容易算,两条黑线之间的距离就是最小的起点到到最大的末点,最小的起点好算,最大的末点就是两点加上各自长度之后的最大值.这就算出了一维的情况,二维的情况一样,计算二次而已. def iou(rect1,rect2): ''' 计算两个矩形的交并比 :param rect1:第一个矩形框.表示为x,y,w,h,其中

  • python不使用for计算两组、多个矩形两两间的iou方式

    解决问题: 不使用for计算两组.多个矩形两两间的iou 使用numpy广播的方法,在python程序中并不建议使用for语句,python中的for语句耗时较多,如果使用numpy广播的思想将会提速不少. 代码: def calc_iou(bbox1, bbox2): if not isinstance(bbox1, np.ndarray): bbox1 = np.array(bbox1) if not isinstance(bbox2, np.ndarray): bbox2 = np.arr

  • 基于python实现计算两组数据P值

    我们在做A/B试验评估的时候需要借助p_value,这篇文章记录如何利用python计算两组数据的显著性. 一.代码 # TTest.py # -*- coding: utf-8 -*- ''' # Created on 2020-05-20 20:36 # TTest.py # @author: huiwenhua ''' ## Import the packages import numpy as np from scipy import stats def get_p_value(arrA

  • python中将两组数据放在一起按照某一固定顺序shuffle的实例

    有的时候需要将两组数据,比如特征和标签放在一起随机打乱, 但是又想记录这种打乱的顺序,那么该怎么做呢?下面是一个很好的方法: b = [1, 2,3, 4, 5,6 , 7,8 ,9] a = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h','i'] c = list(zip(a, b)) print(c) random.Random(100).shuffle(c) print(c) a, b = zip(*c) print(a) print(b) 输出: [('

  • Python 3.3实现计算两个日期间隔秒数/天数的方法示例

    本文实例讲述了Python 3.3实现计算两个日期间隔秒数/天数的方法.分享给大家供大家参考,具体如下: >>> import datetime >>> d1 = datetime.datetime.now() >>> d2 = datetime.datetime.now() >>> interval = d2 - d1 >>> interval datetime.timedelta(0, 14, 670206) &

  • python实现逆波兰计算表达式实例详解

    本文实例讲述了python实现逆波兰计算表达式的方法.分享给大家供大家参考.具体分析如下: 逆波兰表达式又叫做后缀表达式.在通常的表达式中,二元运算符总是置于与之相关的两个运算对象之间,所以,这种表示法也称为中缀表示.波兰逻辑学家J.Lukasiewicz于1929年提出了另一种表示表达式的方法.按此方法,每一运算符都置于其运算对象之后,故称为后缀表示. # -*- coding: utf-8 -*- symbol_priority = {} symbol_priority[0] = ['#']

  • python使用datetime模块计算各种时间间隔的方法

    本文实例讲述了python使用datetime模块计算各种时间间隔的方法.分享给大家供大家参考.具体分析如下: python中通过datetime模块可以很方便的计算两个时间的差,datetime的时间差单位可以是天.小时.秒,甚至是微秒,下面的代码就演示了datetime模块在计算时间差时的强大功能 # -*- coding: utf-8 -*- #!/usr/bin/env python import datetime #datetime一般的时间计算 d1 = datetime.datet

  • asp两组字符串数据比较合并相同数据

    a1="sp2=20;sp1=34;" a2="sp3=2;sp2=3;sp1=4;" 两组字符串数据,将字符串中相同的数据值相加后得到新的一组数据 即"sp3=2;sp2=23;sp1=38" (p.s 一个简单的应用:商品二原有数量20件,商品一原有数量34件,新进货或者新出售了商品二3件,商品一4件等类型模拟情况下计算出进货量,销售量和库存量,小型的进销存系统可采用这样的方法) 那么如何实现两组字符串数据比较合并相同数据? 第一,将两组字符

  • python编程通过蒙特卡洛法计算定积分详解

    想当初,考研的时候要是知道有这么个好东西,计算定积分...开玩笑,那时候计算定积分根本没有这么简单的.但这确实给我打开了一种思路,用编程语言去解决更多更复杂的数学问题.下面进入正题. 如上图所示,计算区间[a b]上f(x)的积分即求曲线与X轴围成红色区域的面积.下面使用蒙特卡洛法计算区间[2 3]上的定积分:∫(x2+4*x*sin(x))dx # -*- coding: utf-8 -*- import numpy as np import matplotlib.pyplot as plt

  • python自动分箱,计算woe,iv的实例代码

    笔者之前用R开发评分卡时,需要进行分箱计算woe及iv值,采用的R包是smbinning,它可以自动进行分箱.近期换用python开发, 也想实现自动分箱功能,找到了一个woe包,地址https://pypi.org/project/woe/,可以直接 pip install woe安装. 由于此woe包官网介绍及给的例子不是很好理解,关于每个函数的使用也没有很详细的说明,经过一番仔细探究后以此文记录一下该woe包的使用及其计算原理. 例子 官方给的例子不是很好理解,以下是我写的一个使用示例.以

  • Python使用正则实现计算字符串算式

    在Python里面其实有一种特别方便实用的直接计算字符串算式的方法 那就是eval() s = '1+2*(6/2-9+3*(3*9-9))' print(eval(s)) #97.0 好了,我现在就是想用正则写一个类似这样功能的东西 第一步,我们拿到一个算式,例如'1+2*(6/2-9+3*(3*9-9))' 按照我们小学学的知识我们应该知道我们应该从最内层括号里面的算式开始计算 那我们怎么拿到最内层括号里面的算式呢?我们可以用正则啊 import re pattern = re.compil

随机推荐