python实现聚类算法原理

本文主要内容:

  • 聚类算法的特点
  • 聚类算法样本间的属性(包括,有序属性、无序属性)度量标准
  • 聚类的常见算法,原型聚类(主要论述K均值聚类),层次聚类、密度聚类
  • K均值聚类算法的python实现,以及聚类算法与EM最大算法的关系
  • 参考引用

先上一张gif的k均值聚类算法动态图片,让大家对算法有个感性认识:

其中:N=200代表有200个样本,不同的颜色代表不同的簇(其中 3种颜色为3个簇),星星代表每个簇的簇心。算法通过25次迭代找到收敛的簇心,以及对应的簇。 每次迭代的过程中,簇心和对应的簇都在变化。

聚类算法的特点

聚类算法是无监督学习算法和前面的有监督算法不同,训练数据集可以不指定类别(也可以指定)。聚类算法对象归到同一簇中,类似全自动分类。簇内的对象越相似,聚类的效果越好。K-均值聚类是每个类别簇都是采用簇中所含值的均值计算而成。

聚类样本间的属性(包括,有序属性、无序属性)度量标准 1. 有序属性

例如:西瓜的甜度:0.1, 0.5, 0.9(值越大,代表越甜)

我们可以使用明可夫斯基距离定义:

2. 无序属性

例如:色泽,青绿、浅绿、深绿(又例如: 性别: 男, 女, 中性,人yao…明显也不能使用0.1, 0.2 等表示求距离)。这些不能使用连续的值表示,求距离的,一般使用VDM计算:

聚类的常见算法,原型聚类(主要论述K均值聚类),层次聚类、密度聚类

聚类算法分为如下三大类:

1. 原型聚类(包含3个子类算法):

K均值聚类算法

学习向量量化

高斯混合聚类

2. 密度聚类:

3. 层次聚类:

下面主要说明K均值聚类算法(示例来源于,周志华西瓜书)

算法基本思想:

K-Means 是发现给定数据集的 K 个簇的聚类算法, 之所以称之为 K-均值 是因为它可以发现 K 个不同的簇,且每个簇的中心采用簇中所含值的均值计算而成.簇个数 K 是用户指定的, 每一个簇通过其质心(centroid), 即簇中所有点的中心来描述.

算法流程如下:

主要是三个步骤:

  • 初始化选择K个簇心,假设样本有 m个属性,则相当于k个m为向量
  • 对于k个簇,求离其最近的样本,并划分新的簇
  • 对于每个新的簇,更新簇心的向量(一般可以求簇的样本的属性的均值)
  • 重复2~3直到算法收敛,或者运行了指定的次数

下面给出西瓜书的示例:

西瓜包含下面两个属性,密度以及含糖率,这两个属性构成的二维向量,作为输入向量(具体数据如下表)

算法大致过程如下:

下图是分类的,每一轮簇心的更新结果,图中横坐标为密度属性,纵坐标为含糖率属性:

4. K均值聚类算法的python实现

下面给出K-means cluster算法的实现的大致框架:

class KMeans(object):
  def __init__(self, k, init_vec, max_iter=100):
    """
    :param k:
    :param init_vec: init mean vectors type: k * n array(n properties)
    """
    self._k = k
    self._cluster_vec = init_vec
    self._max_iter = max_iter

  def fit(self, x):
    # 迭代最大次数
    for i in xrange(self._max_iter):
      print 'iteration %s' % i
      # 求每个簇心的簇类
      d_cluster = self._cluster_point(x)
      # 对现有的簇类,更新簇心
      new_center_node = self._reevaluate_center_node(d_cluster)

      # 检测簇心是否变化,判断算法收敛
      if self._check_converge(new_center_node):
        print 'found converge node'
        break
      else:
        self._cluster_vec = new_center_node

  def _cal_distance(self, vec1, vec2):
    return np.linalg.norm(vec1 - vec2)

  def _cluster_point(self, x):
    # 求每个簇心的簇
    pass
    return d_cluster

  def _reevaluate_center_node(self, d_cluster):
    # 对新的簇,求最佳簇心
    return arr_center_node

  def _check_converge(self, vec):
    # 判断簇心是否改变,算法收敛
    return np.array_equal(self._cluster_vec, vec)

具体的算法,以及见本人的github

下面给出程序的运行结果, 由图可见经过三次迭代程序收敛,并且找到最佳节点:

下面再给出,另一次运行结果,可见由于初始化点选择不一样,得到的结果也是不一样的,初始点的选择对聚类算法的影响还是很大。

K-means实际上是EM算法的一个特例,根据中心点(簇心)决定数据点归属是expectation,而根据构造出来的cluster更新中心(簇心)则是maximization。理解了K-means,也就顺带了解了基本的EM算法思路。

5. 参考引用

参考引用地址

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

您可能感兴趣的文章:

  • K-means聚类算法介绍与利用python实现的代码示例
  • python中实现k-means聚类算法详解
  • Python聚类算法之DBSACN实例分析
  • Python聚类算法之凝聚层次聚类实例分析
  • Python聚类算法之基本K均值实例详解
  • python实现k均值算法示例(k均值聚类算法)
  • python实现kMeans算法
  • Python实现的Kmeans++算法实例
  • Python实现Kmeans聚类算法
(0)

相关推荐

  • python实现kMeans算法

    聚类是一种无监督的学习,将相似的对象放到同一簇中,有点像是全自动分类,簇内的对象越相似,簇间的对象差别越大,则聚类效果越好. 1.k均值聚类算法 k均值聚类将数据分为k个簇,每个簇通过其质心,即簇中所有点的中心来描述.首先随机确定k个初始点作为质心,然后将数据集分配到距离最近的簇中.然后将每个簇的质心更新为所有数据集的平均值.然后再进行第二次划分数据集,直到聚类结果不再变化为止. 伪代码为 随机创建k个簇质心 当任意一个点的簇分配发生改变时:     对数据集中的每个数据点:         对

  • Python聚类算法之凝聚层次聚类实例分析

    本文实例讲述了Python聚类算法之凝聚层次聚类.分享给大家供大家参考,具体如下: 凝聚层次聚类:所谓凝聚的,指的是该算法初始时,将每个点作为一个簇,每一步合并两个最接近的簇.另外即使到最后,对于噪音点或是离群点也往往还是各占一簇的,除非过度合并.对于这里的"最接近",有下面三种定义.我在实现是使用了MIN,该方法在合并时,只要依次取当前最近的点对,如果这个点对当前不在一个簇中,将所在的两个簇合并就行: 单链(MIN):定义簇的邻近度为不同两个簇的两个最近的点之间的距离. 全链(MAX

  • Python聚类算法之基本K均值实例详解

    本文实例讲述了Python聚类算法之基本K均值运算技巧.分享给大家供大家参考,具体如下: 基本K均值 :选择 K 个初始质心,其中 K 是用户指定的参数,即所期望的簇的个数.每次循环中,每个点被指派到最近的质心,指派到同一个质心的点集构成一个.然后,根据指派到簇的点,更新每个簇的质心.重复指派和更新操作,直到质心不发生明显的变化. # scoding=utf-8 import pylab as pl points = [[int(eachpoint.split("#")[0]), in

  • Python实现的Kmeans++算法实例

    1.从Kmeans说起 Kmeans是一个非常基础的聚类算法,使用了迭代的思想,关于其原理这里不说了.下面说一下如何在matlab中使用kmeans算法. 创建7个二维的数据点: 复制代码 代码如下: x=[randn(3,2)*.4;randn(4,2)*.5+ones(4,1)*[4 4]]; 使用kmeans函数: 复制代码 代码如下: class = kmeans(x, 2); x是数据点,x的每一行代表一个数据:2指定要有2个中心点,也就是聚类结果要有2个簇. class将是一个具有7

  • python中实现k-means聚类算法详解

    算法优缺点: 优点:容易实现 缺点:可能收敛到局部最小值,在大规模数据集上收敛较慢 使用数据类型:数值型数据 算法思想 k-means算法实际上就是通过计算不同样本间的距离来判断他们的相近关系的,相近的就会放到同一个类别中去. 1.首先我们需要选择一个k值,也就是我们希望把数据分成多少类,这里k值的选择对结果的影响很大,Ng的课说的选择方法有两种一种是elbow method,简单的说就是根据聚类的结果和k的函数关系判断k为多少的时候效果最好.另一种则是根据具体的需求确定,比如说进行衬衫尺寸的聚

  • Python聚类算法之DBSACN实例分析

    本文实例讲述了Python聚类算法之DBSACN.分享给大家供大家参考,具体如下: DBSCAN:是一种简单的,基于密度的聚类算法.本次实现中,DBSCAN使用了基于中心的方法.在基于中心的方法中,每个数据点的密度通过对以该点为中心以边长为2*EPs的网格(邻域)内的其他数据点的个数来度量.根据数据点的密度分为三类点: 核心点:该点在邻域内的密度超过给定的阀值MinPs. 边界点:该点不是核心点,但是其邻域内包含至少一个核心点. 噪音点:不是核心点,也不是边界点. 有了以上对数据点的划分,聚合可

  • Python实现Kmeans聚类算法

    本节内容:本节内容是根据上学期所上的模式识别课程的作业整理而来,第一道题目是Kmeans聚类算法,数据集是Iris(鸢尾花的数据集),分类数k是3,数据维数是4. 关于聚类 聚类算法是这样的一种算法:给定样本数据Sample,要求将样本Sample中相似的数据聚到一类.有了这个认识之后,就应该了解了聚类算法要干什么了吧.说白了,就是归类.     首先,我们需要考虑的是,如何衡量数据之间的相似程度?比如说,有一群说不同语言的人,我们一般是根据他们的方言来聚类的(当然,你也可以指定以身高来聚类).

  • K-means聚类算法介绍与利用python实现的代码示例

    聚类 今天说K-means聚类算法,但是必须要先理解聚类和分类的区别,很多业务人员在日常分析时候不是很严谨,混为一谈,其实二者有本质的区别. 分类其实是从特定的数据中挖掘模式,作出判断的过程.比如Gmail邮箱里有垃圾邮件分类器,一开始的时候可能什么都不过滤,在日常使用过程中,我人工对于每一封邮件点选"垃圾"或"不是垃圾",过一段时间,Gmail就体现出一定的智能,能够自动过滤掉一些垃圾邮件了.这是因为在点选的过程中,其实是给每一条邮件打了一个"标签&qu

  • python实现k均值算法示例(k均值聚类算法)

    简单实现平面的点K均值分析,使用欧几里得距离,并用pylab展示. 复制代码 代码如下: import pylab as pl #calc Euclid squiredef calc_e_squire(a, b):    return (a[0]- b[0]) ** 2 + (a[1] - b[1]) **2 #init the 20 pointa = [2,4,3,6,7,8,2,3,5,6,12,10,15,16,11,10,19,17,16,13]b = [5,6,1,4,2,4,3,1,

  • python实现聚类算法原理

    本文主要内容: 聚类算法的特点 聚类算法样本间的属性(包括,有序属性.无序属性)度量标准 聚类的常见算法,原型聚类(主要论述K均值聚类),层次聚类.密度聚类 K均值聚类算法的python实现,以及聚类算法与EM最大算法的关系 参考引用 先上一张gif的k均值聚类算法动态图片,让大家对算法有个感性认识: 其中:N=200代表有200个样本,不同的颜色代表不同的簇(其中 3种颜色为3个簇),星星代表每个簇的簇心.算法通过25次迭代找到收敛的簇心,以及对应的簇. 每次迭代的过程中,簇心和对应的簇都在变

  • Kmeans均值聚类算法原理以及Python如何实现

    第一步.随机生成质心 由于这是一个无监督学习的算法,因此我们首先在一个二维的坐标轴下随机给定一堆点,并随即给定两个质心,我们这个算法的目的就是将这一堆点根据它们自身的坐标特征分为两类,因此选取了两个质心,什么时候这一堆点能够根据这两个质心分为两堆就对了.如下图所示: 第二步.根据距离进行分类 红色和蓝色的点代表了我们随机选取的质心.既然我们要让这一堆点的分为两堆,且让分好的每一堆点离其质心最近的话,我们首先先求出每一个点离质心的距离.假如说有一个点离红色的质心比例蓝色的质心更近,那么我们则将这个

  • Python基于聚类算法实现密度聚类(DBSCAN)计算【测试可用】

    本文实例讲述了Python基于聚类算法实现密度聚类(DBSCAN)计算.分享给大家供大家参考,具体如下: 算法思想 基于密度的聚类算法从样本密度的角度考察样本之间的可连接性,并基于可连接样本不断扩展聚类簇得到最终结果. 几个必要概念: ε-邻域:对于样本集中的xj, 它的ε-邻域为样本集中与它距离小于ε的样本所构成的集合. 核心对象:若xj的ε-邻域中至少包含MinPts个样本,则xj为一个核心对象. 密度直达:若xj位于xi的ε-邻域中,且xi为核心对象,则xj由xi密度直达. 密度可达:若样

  • python实现SOM算法

    算法简介 SOM网络是一种竞争学习型的无监督神经网络,将高维空间中相似的样本点映射到网络输出层中的邻近神经元. 训练过程简述:在接收到训练样本后,每个输出层神经元会计算该样本与自身携带的权向量之间的距离,距离最近的神经元成为竞争获胜者,称为最佳匹配单元.然后最佳匹配单元及其邻近的神经元的权向量将被调整,以使得这些权向量与当前输入样本的距离缩小.这个过程不断迭代,直至收敛. 网络结构:输入层和输出层(或竞争层),如下图所示. 输入层:假设一个输入样本为X=[x1,x2,x3,-,xn],是一个n维

  • python聚类算法解决方案(rest接口/mpp数据库/json数据/下载图片及数据)

    1. 场景描述 一直做java,因项目原因,需要封装一些经典的算法到平台上去,就一边学习python,一边网上寻找经典算法代码,今天介绍下经典的K-means聚类算法,算法原理就不介绍了,只从代码层面进行介绍,包含:rest接口.连接mpp数据库.回传json数据.下载图片及数据. 2. 解决方案 2.1 项目套路 (1)python经典算法是单独的服务器部署,提供rest接口出来,供java平台调用,交互的方式是http+json: (2)数据从mpp数据库-Greenplum中获取: (3)

  • 利用Python如何实现K-means聚类算法

    目录 前言 算法原理 目标函数 算法流程 Python实现 总结 前言 K-Means 是一种非常简单的聚类算法(聚类算法都属于无监督学习).给定固定数量的聚类和输入数据集,该算法试图将数据划分为聚类,使得聚类内部具有较高的相似性,聚类与聚类之间具有较低的相似性. 算法原理 1. 初始化聚类中心,或者在输入数据范围内随机选择,或者使用一些现有的训练样本(推荐) 2. 直到收敛 将每个数据点分配到最近的聚类.点与聚类中心之间的距离是通过欧几里德距离测量得到的. 通过将聚类中心的当前估计值设置为属于

随机推荐