Python函数装饰器原理与用法详解

本文实例讲述了Python函数装饰器原理与用法。分享给大家供大家参考,具体如下:

装饰器本质上是一个函数,该函数用来处理其他函数,它可以让其他函数在不需要修改代码的前提下增加额外的功能,装饰器的返回值也是一个函数对象。它经常用于有切面需求的场景,比如:插入日志、性能测试、事务处理、缓存、权限校验等应用场景。装饰器是解决这类问题的绝佳设计,有了装饰器,我们就可以抽离出大量与函数功能本身无关的雷同代码并继续重用。概括的讲,装饰器的作用就是为已经存在的对象添加额外的功能。

严格来说,装饰器只是语法糖,装饰器是可调用的对象,可以像常规的可调用对象那样调用,特殊的地方是装饰器的参数是一个函数

现在有一个新的需求,希望可以记录下函数的执行时间,于是在代码中添加日志代码:

import time
#遵守开放封闭原则
def foo():
  start = time.time()
  # print(start) # 1504698634.0291758从1970年1月1号到现在的秒数,那年Unix诞生
  time.sleep(3)
  end = time.time()
  print('spend %s'%(end - start))
foo()

bar()、bar2()也有类似的需求,怎么做?再在bar函数里调用时间函数?这样就造成大量雷同的代码,为了减少重复写代码,我们可以这样做,重新定义一个函数:专门设定时间:

import time
def show_time(func):
  start_time=time.time()
  func()
  end_time=time.time()
  print('spend %s'%(end_time-start_time))
def foo():
  print('hello foo')
  time.sleep(3)
show_time(foo)

但是这样的话,你基础平台的函数修改了名字,容易被业务线的人投诉的,因为我们每次都要将一个函数作为参数传递给show_time函数。而且这种方式已经破坏了原有的代码逻辑结构,之前执行业务逻辑时,执行运行foo(),但是现在不得不改成show_time(foo)。那么有没有更好的方式的呢?当然有,答案就是装饰器。

def show_time(f):
  def inner():
    start = time.time()
    f()
    end = time.time()
    print('spend %s'%(end - start))
  return inner
@show_time #foo=show_time(f)
def foo():
  print('foo...')
  time.sleep(1)
foo()
def bar():
  print('bar...')
  time.sleep(2)
bar()

输出结果:

foo...
spend 1.0005607604980469
bar...

函数show_time就是装饰器,它把真正的业务方法f包裹在函数里面,看起来像foo被上下时间函数装饰了。在这个例子中,函数进入和退出时 ,被称为一个横切面(Aspect),这种编程方式被称为面向切面的编程(Aspect-Oriented Programming)。

@符号是装饰器的语法糖,在定义函数的时候使用,避免再一次赋值操作

装饰器在Python使用如此方便都要归因于Python的函数能像普通的对象一样能作为参数传递给其他函数,可以被赋值给其他变量,可以作为返回值,可以被定义在另外一个函数内。

装饰器有2个特性,一是可以把被装饰的函数替换成其他函数, 二是可以在加载模块时候立即执行

def decorate(func):
  print('running decorate', func)
  def decorate_inner():
    print('running decorate_inner function')
    return func()
  return decorate_inner
@decorate
def func_1():
  print('running func_1')
if __name__ == '__main__':
  print(func_1)
  #running decorate <function func_1 at 0x000001904743DEA0>
  # <function decorate.<locals>.decorate_inner at 0x000001904743DF28>
  func_1()
  #running decorate_inner function
  # running func_1

通过args 和 *kwargs 传递被修饰函数中的参数

def decorate(func):
  def decorate_inner(*args, **kwargs):
    print(type(args), type(kwargs))
    print('args', args, 'kwargs', kwargs)
    return func(*args, **kwargs)
  return decorate_inner
@decorate
def func_1(*args, **kwargs):
  print(args, kwargs)
if __name__ == '__main__':
  func_1('1', '2', '3', para_1='1', para_2='2', para_3='3')
#返回结果
#<class 'tuple'> <class 'dict'>
# args ('1', '2', '3') kwargs {'para_1': '1', 'para_2': '2', 'para_3': '3'}
# ('1', '2', '3') {'para_1': '1', 'para_2': '2', 'para_3': '3'}

带参数的被装饰函数 

import time
# 定长
def show_time(f):
  def inner(x,y):
    start = time.time()
    f(x,y)
    end = time.time()
    print('spend %s'%(end - start))
  return inner
@show_time
def add(a,b):
  print(a+b)
  time.sleep(1)
add(1,2)

不定长

import time
#不定长
def show_time(f):
  def inner(*x,**y):
    start = time.time()
    f(*x,**y)
    end = time.time()
    print('spend %s'%(end - start))
  return inner
@show_time
def add(*a,**b):
  sum=0
  for i in a:
    sum+=i
  print(sum)
  time.sleep(1)
add(1,2,3,4)

带参数的装饰器

在上面的装饰器调用中,比如@show_time,该装饰器唯一的参数就是执行业务的函数。装饰器的语法允许我们在调用时,提供其它参数,比如@decorator(a)。这样,就为装饰器的编写和使用提供了更大的灵活性。

import time
def time_logger(flag=0):
  def show_time(func):
    def wrapper(*args, **kwargs):
      start_time = time.time()
      func(*args, **kwargs)
      end_time = time.time()
      print('spend %s' % (end_time - start_time))
      if flag:
        print('将这个操作的时间记录到日志中')
    return wrapper
  return show_time
@time_logger(flag=1)
def add(*args, **kwargs):
  time.sleep(1)
  sum = 0
  for i in args:
    sum += i
  print(sum)
add(1, 2, 5)

@time_logger(flag=1) 做了两件事:

(1)time_logger(1):得到闭包函数show_time,里面保存环境变量flag

(2)@show_time   :add=show_time(add)

上面的time_logger是允许带参数的装饰器。它实际上是对原有装饰器的一个函数封装,并返回一个装饰器(一个含有参数的闭包函数)。当我 们使用@time_logger(1)调用的时候,Python能够发现这一层的封装,并把参数传递到装饰器的环境中。

叠放装饰器

执行顺序是什么

如果一个函数被多个装饰器修饰,其实应该是该函数先被最里面的装饰器修饰后(下面例子中函数main()先被inner装饰,变成新的函数),变成另一个函数后,再次被装饰器修饰

def outer(func):
  print('enter outer', func)
  def wrapper():
    print('running outer')
    func()
  return wrapper
def inner(func):
  print('enter inner', func)
  def wrapper():
    print('running inner')
    func()
  return wrapper
@outer
@inner
def main():
  print('running main')
if __name__ == '__main__':
  main()
#返回结果
# enter inner <function main at 0x000001A9F2BCDF28>
# enter outer <function inner.<locals>.wrapper at 0x000001A9F2BD5048>
# running outer
# running inner
# running main

类装饰器

相比函数装饰器,类装饰器具有灵活度大、高内聚、封装性等优点。使用类装饰器还可以依靠类内部的__call__方法,当使用 @ 形式将装饰器附加到函数上时,就会调用此方法。

import time
class Foo(object):
  def __init__(self, func):
    self._func = func
  def __call__(self):
    start_time=time.time()
    self._func()
    end_time=time.time()
    print('spend %s'%(end_time-start_time))
@Foo #bar=Foo(bar)
def bar():
  print ('bar')
  time.sleep(2)
bar()  #bar=Foo(bar)()>>>>>>>没有嵌套关系了,直接active Foo的 __call__方法

标准库中有多种装饰器

例如:装饰方法的函数有property, classmethod, staticmethod; functools模块中的lru_cache, singledispatch,  wraps 等等

from functools import lru_cache
from functools import singledispatch
from functools import wraps

functools.wraps使用装饰器极大地复用了代码,但是他有一个缺点就是原函数的元信息不见了,比如函数的docstring、__name__、参数列表,先看例子:

def foo():
  print("hello foo")
print(foo.__name__)# foo
def logged(func):
  def wrapper(*args, **kwargs):
    print (func.__name__ + " was called")
    return func(*args, **kwargs)
  return wrapper
@logged
def cal(x):
  resul=x + x * x
  print(resul)
cal(2)
#6
#cal was called
print(cal.__name__)# wrapper
print(cal.__doc__)#None
#函数f被wrapper取代了,当然它的docstring,__name__就是变成了wrapper函数的信息了。

好在我们有functools.wraps,wraps本身也是一个装饰器,它能把原函数的元信息拷贝到装饰器函数中,这使得装饰器函数也有和原函数一样的元信息了。

from functools import wraps
def logged(func):
  @wraps(func)
  def wrapper(*args, **kwargs):
    print(func.__name__ + " was called")
    return func(*args, **kwargs)
  return wrapper
@logged
def cal(x):
  return x + x * x
print(cal.__name__) # cal

使用装饰器会产生我们可能不希望出现的副作用, 例如:改变被修饰函数名称,对于调试器或者对象序列化器等需要使用内省机制的那些工具,可能会无法正常运行;

其实调用装饰器后,会将同一个作用域中原来函数同名的那个变量(例如下面的func_1),重新赋值为装饰器返回的对象;使用@wraps后,会把与内部函数(被修饰函数,例如下面的func_1)相关的重要元数据全部复制到外围函数(例如下面的decorate_inner)

from functools import wraps
def decorate(func):
  print('running decorate', func)
  @wraps(func)
  def decorate_inner():
    print('running decorate_inner function', decorate_inner)
    return func()
  return decorate_inner
@decorate
def func_1():
  print('running func_1', func_1)
if __name__ == '__main__':
  func_1()
#输出结果
#running decorate <function func_1 at 0x0000023E8DBD78C8>
# running decorate_inner function <function func_1 at 0x0000023E8DBD7950>
# running func_1 <function func_1 at 0x0000023E8DBD7950>

关于Python相关内容感兴趣的读者可查看本站专题:《Python函数使用技巧总结》、《Python面向对象程序设计入门与进阶教程》、《Python数据结构与算法教程》、《Python字符串操作技巧汇总》、《Python编码操作技巧总结》及《Python入门与进阶经典教程》

希望本文所述对大家Python程序设计有所帮助。

(0)

相关推荐

  • python 装饰器功能以及函数参数使用介绍

    简单的说:装饰器主要作用就是对函数进行一些修饰,它的出现是在引入类方法和静态方法的时候为了定义静态方法出现的.例如为了把foo()函数声明成一个静态函数 复制代码 代码如下: class Myclass(object): def staticfoo(): ............ ............ staticfoo = staticmethod(staticfoo) 可以用装饰器的方法实现: 复制代码 代码如下: class Myclass(object): @staticmethod

  • 详谈Python高阶函数与函数装饰器(推荐)

    一.上节回顾 Python2与Python3字符编码问题,不管你是初学者还是已经对Python的项目了如指掌了,都会犯一些编码上面的错误.我在这里简单归纳Python3和Python2各自的区别. 首先是Python3-->代码文件都是用utf-8来解释的.将代码和文件读到内存中就变成了Unicode,这也就是为什么Python只有encode没有decode了,因为内存中都将字符编码变成了Unicode,而Unicode是万国码,可以"翻译"所以格式编码的格式.Python3中

  • Python函数装饰器常见使用方法实例详解

    本文实例讲述了Python函数装饰器常见使用方法.分享给大家供大家参考,具体如下: 一.装饰器 首先,我们要了解到什么是开放封闭式原则? 软件一旦上线后,对修改源代码是封闭的,对功能的扩张是开放的,所以我们应该遵循开放封闭的原则. 也就是说:我们必须找到一种解决方案,能够在不修改一个功能源代码以及调用方式的前提下,为其加上新功能. 总结:原则如下: 1.不修改源代码 2.不修改调用方式 目的:在遵循1和2原则的基础上扩展新功能. 二.什么是装饰器? 器:指的是工具, 装饰:指的是为被装饰对象添加

  • Python函数装饰器实现方法详解

    本文实例讲述了Python函数装饰器实现方法.分享给大家供大家参考,具体如下: 编写函数装饰器 这里主要介绍编写函数装饰器的相关内容. 跟踪调用 如下代码定义并应用一个函数装饰器,来统计对装饰的函数的调用次数,并且针对每一次调用打印跟踪信息. class tracer: def __init__(self,func): self.calls = 0 self.func = func def __call__(self,*args): self.calls += 1 print('call %s

  • python函数装饰器用法实例详解

    本文实例讲述了python函数装饰器用法.分享给大家供大家参考.具体如下: 装饰器经常被用于有切面需求的场景,较为经典的有插入日志.性能测试.事务处理等.装饰器是解决这类问题的绝佳设计, 有了装饰器,我们就可以抽离出大量函数中与函数功能本身无关的雷同代码并继续重用.概括的讲,装饰器的作用就是为已经存在的对象添加额外的功能. #! coding=utf-8 import time def timeit(func): def wrapper(a): start = time.clock() func

  • Python中利用函数装饰器实现备忘功能

    "备忘"的定义 "memoization"(备忘)这个词是由Donald Michie在1968年提出的,它基于拉丁语单词"memorandum"(备忘录),意思是"被记住".虽然它和单词"memorization"在某种程度上有些相似,但它并不是该单词的错误拼写.实际上,Memoisation是一种用于通过计算来加速程序的技术,它通过记住输入量的计算结果,例如函数调用结果,来实现其加速目的.如果遇到相同的

  • python中函数总结之装饰器闭包详解

    1.前言 函数也是一个对象,从而可以增加属性,使用句点来表示属性. 如果内部函数的定义包含了在外部函数中定义的对象的引用(外部对象可以是在外部函数之外),那么内部函数被称之为闭包. 2.装饰器 装饰器就是包装原来的函数,从而在不需要修改原来代码的基础之上,可以做更多的事情. 装饰器语法如下: @deco2 @deco1 def func(arg1,arg2...): pass 这个表示了有两个装饰器的函数,那么表示的含义为:func = deco2(deco1(func)) 无参装饰器语法如下:

  • Python实现对一个函数应用多个装饰器的方法示例

    本文实例讲述了Python实现对一个函数应用多个装饰器的方法.分享给大家供大家参考,具体如下: 下面的例子展示了对一个函数应用多个装饰器,可以加多个断点,在debug模式下,查看程序的运行轨迹... #!/usr/bin/env python #coding:utf-8 def decorator1(func): def wrapper(): print 'hello python 之前' func() return wrapper def decorator2(func): def wrapp

  • python通过装饰器检查函数参数数据类型的方法

    本文实例讲述了python通过装饰器检查函数参数数据类型的方法.分享给大家供大家参考.具体分析如下: 这段代码定义了一个python装饰器,通过此装饰器可以用来检查指定函数的参数是否是指定的类型,在定义函数时加入此装饰器可以非常清晰的检测函数参数的类型,非常方便 复制代码 代码如下: def accepts(exception,**types):     def check_accepts(f):         assert len(types) == f.func_code.co_argco

  • 浅析Python编写函数装饰器

    编写函数装饰器 本节主要介绍编写函数装饰器的相关内容. 跟踪调用 如下代码定义并应用一个函数装饰器,来统计对装饰的函数的调用次数,并且针对每一次调用打印跟踪信息. class tracer: def __init__(self,func): self.calls = 0 self.func = func def __call__(self,*args): self.calls += 1 print('call %s to %s' %(self.calls, self.func.__name__)

  • Python装饰器的函数式编程详解

    Python的装饰器的英文名叫Decorator,当你看到这个英文名的时候,你可能会把其跟Design Pattern里的Decorator搞混了,其实这是完全不同的两个东西.虽然好像,他们要干的事都很相似--都是想要对一个已有的模块做一些"修饰工作",所谓修饰工作就是想给现有的模块加上一些小装饰(一些小功能,这些小功能可能好多模块都会用到),但又不让这个小装饰(小功能)侵入到原有的模块中的代码里去.但是OO的Decorator简直就是一场恶梦,不信你就去看看wikipedia上的词条

  • python使用装饰器和线程限制函数执行时间的方法

    本文实例讲述了python使用装饰器和线程限制函数执行时间的方法.分享给大家供大家参考.具体分析如下: 很多时候函数内部包含了一些不可预知的事情,比如调用其它软件,从网络抓取信息,可能某个函数会卡在某个地方不动态,这段代码可以用来限制函数的执行时间,只需要在函数的上方添加一个装饰器,timelimited(2)就可以限定函数必须在2秒内执行完成,如果执行完成则返回函数正常的返回值,如果执行超时则会抛出错误信息. # -*- coding: utf-8 -*- from threading imp

随机推荐