rabbitmq(中间消息代理)在python中的使用详解

在之前的有关线程,进程的博客中,我们介绍了它们各自在同一个程序中的通信方法。但是不同程序,甚至不同编程语言所写的应用软件之间的通信,以前所介绍的线程、进程队列便不再适用了;此种情况便只能使用socket编程了,然而不同程序之间的通信便不再像线程进程之间的那么简单了,要考虑多种情况(比如其中一方断线另一方如何处理;消息群发,多个程序之间的通信等等),如果每遇到一次程序间的通信,便要根据不同情况编写不同的socket,还要维护、完善这个socket这会使得编程人员的工作量大大增加,也使得程序更易崩溃。所以,一般遇到这种情况,便使用消息队列MQ(Message Queue),那么问题来了。

1. 什么是消息队列MQ?

MQ是一种应用程序对应用程序的通信方法。应用程序通过读出(写入)队列的消息(针对应用程序的数据)来通信,而无需使用专用连接来链接它们。消息传递指的是程序之间通过在消息中发送数据进行通信,而不是通过直接调用彼此来通信,排队指的是应用程序通过 队列来通信。队列的使用排除了接收和发送应用程序同时执行的要求。

2. 什么是rabbitmq?如何使用它?

RabbitMQ是流行的开源消息队列系统,用erlang语言开发。RabbitMQ是AMQP(高级消息队列协议)的标准实现。

RabbitMQ也是前面所提到的生产者消费者模型,一端发送消息(生产任务),一端接收消息(处理任务)。

rabbitmq的详细使用(包括各种系统的安装配置)可参见其官方文档:http://www.rabbitmq.com/documentation.html

由于应用程序之间的通信情况异常复杂,rabbitmq支持的编程语言有10多种,所以在此博客中不可能完全演示rabbitmq的所有使用。本片博客将会介绍rabbitmq在python中的基本使用,如果你只想使用rabbitmq完成一些简单的任务,则本篇博客足以满足你的需求;如果你想深入学习了解rabbitmq的工作原理,那么读完本篇博客,你可以更容易的读懂rabbitmq的官方文档;当然这些只限于你在使用python编程。

在python中我们使用pika(第三方模块,使用pip安装即可使用)模块进行rabbitmq的操作,接下来,使用python实现一个rabbitmq最简单的通信。

In the diagram below, "P" is our producer and "C" is our consumer. The box in the middle is a queue - a message buffer that RabbitMQ keeps on behalf of the consumer.

Our overall design will look like:

Producer sends messages to the "hello" queue. The consumer receives messages from that queue.

例一(简单的消息收发):

Sending

Our first programsend.pywill send a single message to the queue. The first thing we need to do is to establish a connection with RabbitMQ server.

import pika
connection = pika.BlockingConnection(pika.ConnectionParameters("localhost")) # 建立程序与rabbitmq的连接
channel = connection.channel()
channel.queue_declare(queue='hello') # 定义hello队列
channel.basic_publish(exchange='',
      routing_key='hello', # 告诉rabbitmq将消息发送到hello队列中
      body='Hello world!') # 发送消息的内容
print(" [x] Sent 'Hello World!'")
connection.close() # 关闭与rabbitmq的连接

Our second programreceive.pywill receive messages from the queue and print them on the screen.

import pika
import time
connection = pika.BlockingConnection(pika.ConnectionParameters("localhost")) # 建立程序与rabbitmq的连接
channel = connection.channel()
# 在接收端定义队列,参数与发送端的相同
channel.queue_declare(queue='hello')
def callback(ch, method, properties, body):
 """
 收到消息调用callback处理消息
 :param ch:
 :param method:
 :param properties:
 :param body:
 :return:
 """
 print(" [x] received %r" % body)
 # time.sleep(30)
 print("Done....")
channel.basic_consume(callback,
      queue='hello', # 告诉rabbitmq此程序从hello队列中接收消息
      no_ack=True)

# channel.basic_consume(callback,
#      queue='hello')
print(' [*] Waiting for messages. To exit press CTRL+C')
channel.start_consuming() # 开始接收,未收到消息阻塞

注1:我们可以打开time.sleep()的注释(模仿任务处理所需的时间),将no_ack设为默认值(不传参数),同时运行多个receive.py, 运行send.py发一次消息,第一个开始运行的receive.py接收到消息,开始处理任务,如果中途宕机(任务未处理完);那么第二个开始运行的receive.py就会接收到消息,开始处理任务;如果第二个也宕机了,则第三个继续;如果依次所有运行的receive都宕机(任务未处理完)了,则下次开始运行的第一个receive.py将继续接收消息处理任务,这个机制防止了一些必须完成的任务由于处理任务的程序异常终止导致任务不能完成。如果将no_ack设为True,中途宕机,则后面的接收端不会再接收消息处理任务。

注2:如果发送端不停的发消息,则接收端分别是第一个开始运行的接收,第二个开始运行的接收,第三个开始运行接收,依次接收,这是rabbitmq的消息轮循机制(相当于负载均衡,防止一个接收端接收过多任务卡死,当然这种机制存在弊端,就是如果就收端机器有的配置高有的配置低,就会使配置高的机器得不到充分利用而配置低的机器一直在工作)。这一点可以启动多个receive.py,多次运行send.py验证。

上面的例子我们介绍了消息的接收端(即任务的处理端)宕机,我们该如何处理。接下来,我们将重点放在消息的发送端(即服务端),与接收端不同,如果发送端宕机,则会丢失存储消息的队列,存储的消息(要发送给接收端处理的任务),这些信息一旦丢失会造成巨大的损失,所以下面的重点就是消息的持久化,即发送端异常终止,重启服务后,队列,消息都将自动加载进服务里。其实只要将上面的代码稍微修改就可实现。

例二(消息的持久化):

Sending:

import pika
connection = pika.BlockingConnection(pika.ConnectionParameters("localhost"))
channel = connection.channel()
channel.queue_declare(queue='task_queue', durable=True)  #使队列持久化
message = "Hello World"
channel.basic_publish(exchange='',
      routing_key='task_queue',
      body=message,
      properties=pika.BasicProperties(
       delivery_mode=2,  #使消息持久化
      ))
print(" [x] Sent %r" % message)
connection.close()

Receiving:

import pika
import time

connection = pika.BlockingConnection(pika.ConnectionParameters("localhost"))
channel = connection.channel()

channel.queue_declare(queue='task_queue', durable=True) #再次申明队列,和发送端参数应一样
print(' [*] Waiting for messages. To exit press CTRL+C')

def callback(ch, method, properties, body):
 print(" [x] received %r" % body)
 time.sleep(2)
 print(" [x] Done")
 # 因为没有设置no_ask=True, 所以需要告诉rabbitmq消息已经处理完毕,rabbitmq将消息移出队列。
 ch.basic_ack(delivery_tag=method.delivery_tag)

#同一时间worker只接收一条消息,等这条消息处理完在接收下一条
channel.basic_qos(prefetch_count=1)
channel.basic_consume(callback,
      queue='task_queue')

channel.start_consuming()

注1:worker.py中的代码如果不设置,则new_task.py意外终止在重启后,worker会同时接收终止前没有处理的所有消息。两个程序中的queue设置的参数要相同,否则程序出错。no_ask=True如果没设置,则worker.py中的ch.basic_ack(delivery_tag=method.delivery_tag)这行代码至关重要,如果不写,则不管接收的消息有没有处理完,此消息将一直存在与队列中。

注2:这句代码---channel.basic_qos(prefetch_count=1),解决了上例中消息轮循机制的代码,即接收端(任务的处理端)每次只接收一个任务(参数为几接收几个任务),处理完成后通过向发送端的汇报(即注1中的代码)来接收下一个任务,如果有任务正在处理中它不再接收新的任务。

前面所介绍的例一,例二都是一条消息,只能被一个接收端收到。那么该如何实现一条消息多个接收端同时收到(即消息群发或着叫广播模式)呢?

其实,在rabbitmq中只有consumer(消费者,即接收端)与queue绑定,对于producer(生产者,即发送端)只是将消息发送到特定的队列。consumer从与自己相关的queue中读取消息而已。所以要实现消息群发,只需要将同一条放到多个消费者队列即可。在rabbitmq中这个工作由exchange来做,它可以设定三种类型,它们分别实现了不同的需求,我们分别来介绍。

例三(exchange的类型为fanout):

当exchange的类型为fanout时,所有绑定这个exchange的队列都会收到发来的消息。

import pika
import sys
connection = pika.BlockingConnection(pika.ConnectionParameters(host='localhost'))
channel = connection.channel()
# 申明一个exchange,两个参数分别为exchange的名字和类型;当exchang='fanout'时,所有绑定到此exchange的消费者队列都将收到消息
channel.exchange_declare(exchange='logs',
       exchange_type='fanout')
# 消息可以在命令行启动脚本时以参数的形式传入
# message = ' '.join(sys.argv[1:]) or "info: Hello World!"
message = 'Hello World!'
channel.basic_publish(exchange='logs',
      routing_key='',
      body=message)
print(" [x] Sent %r" % message)
connection.close()
import pika
connection = pika.BlockingConnection(pika.ConnectionParameters(host='localhost'))
channel = connection.channel()
channel.exchange_declare(exchange='logs',
       exchange_type='fanout')
# 随机生成一个queue,此queue唯一,且在连接端开后自动销毁
result = channel.queue_declare(exclusive=True)
# 得到随机生成消费者队列的名字
queue_name = result.method.queue
# 将消费者队列与exchange绑定
channel.queue_bind(exchange='logs',
     queue=queue_name)

print(' [*] Waiting for logs. To exit press CTRL+C')

def callback(ch, method, properties, body):
 print(" [x] received %r" % body)

channel.basic_consume(callback,
      queue=queue_name,
      no_ack=True)

channel.start_consuming()

注1:emit_log.py为消息的发送端,receive_logs.py为消息的接收端。可以同时运行多个receive_logs.py,当emit_log.py发送消息时,可以发现所有正在运行的receive_logs.py都会收到来自发送端的消息。

注2:类似与广播,如果消息发送时,接收端没有运行,那么它将不会收到此条消息,即消息的广播是即时的。

例四(exchange的类型为direct):

当exchange的类型为direct时,发送端和接收端都要指明消息的级别,接收端只能接收到被指明级别的消息。

import pika
import sys
connection = pika.BlockingConnection(pika.ConnectionParameters(host='localhost'))
channel = connection.channel()
channel.exchange_declare(exchange='direct_logs',
       exchange_type='direct')
# 命令行启动时,以参数的的形式传入发送消息的级别,未传怎默认设置未info
# severity = sys.argv[1] if len(sys.argv) > 2 else 'info'
# 命令行启动时,以参数的的形式传入发送消息的内容,未传怎默认设置Hello World!
# message = ' '.join(sys.argv[2:]) or 'Hello World!'
# 演示使用,实际运用应用上面的方式设置消息级别
severity = 'info' #作为例子直接将消息的级别设置为info
# severity = 'warning'
message = 'Hello World'

#使用exchang的direct模式时,routing_key的值为消息的级别
channel.basic_publish(exchange='direct_logs',
      routing_key=severity,
      body=message)
print(" [x] Sent %r:%r" % (severity, message))
connection.close()
#!/usr/bin/env python
import pika
import sys
connection = pika.BlockingConnection(pika.ConnectionParameters(host='localhost'))
channel = connection.channel()
channel.exchange_declare(exchange='direct_logs',
       exchange_type='direct')
result = channel.queue_declare(exclusive=True)
queue_name = result.method.queue
# 命令行启动时以参数的形式传入要接收哪个级别的消息,可以传入多个级别
# severities = sys.argv[1:]
# 演示使用,实际运用应该用上面的方式指明消息级别
# 作为演示,直接设置两个接收级别,info 和 warning
severities = ['info', 'warning']
if not severities:
 """如果要接收消息的级别不存在则提示用户输入级别并退出程序"""
 sys.stderr.write("Usage: %s [info] [warning] [error]\n" % sys.argv[0])
 sys.exit(1)
for severity in severities:
 """依次为每个消息级别绑定queue"""
 channel.queue_bind(exchange='direct_logs',
      queue=queue_name,
      routing_key=severity)
print(' [*] Waiting for logs. To exit press CTRL+C')
def callback(ch, method, properties, body):
 print(" [x] %r:%r" % (method.routing_key, body))
channel.basic_consume(callback,
      queue=queue_name,
      no_ack=True)
channel.start_consuming()

注1:exchange_type=direct时,rabbitmq按消息级别发送和接收消息,接收端只能接收被指明级别的消息,其他消息,即时是由同一个发送端发送的也无法接收。当在接收端传入多个消息级别时,应逐个绑定消息队列。

注2:exchange_type=direct时,同样是广播模式,也就是如果给多个接收端指定相同的消息级别,它们都可以同时收到这一级别的消息。

例三(exchange的类型为topic):

当exchange的类型为topic时,在发送消息时,应指明消息消息的类型(比如mysql.log、qq.info等),我们可以在接收端指定接收消息类型的关键字(即按关键字接收,在类型为topic时,这个关键字可以是一个表达式)。

import pika
import sys
connection = pika.BlockingConnection(pika.ConnectionParameters(host='localhost'))
channel = connection.channel()
channel.exchange_declare(exchange='topic_logs',
       exchange_type='topic')
# 以命令行的方式启动发送端,以参数的形式传入发送消息类型的关键字
routing_key = sys.argv[1] if len(sys.argv[1]) > 2 else 'anonymous.info'
# routing_key = 'anonymous.info'
# routing_key = 'abc.orange.abc'
# routing_key = 'abc.abc.rabbit'
# routing_key = 'lazy.info'
message = ' '.join(sys.argv[2:]) or 'Hello World!'
channel.basic_publish(exchange='topic_logs',
      routing_key=routing_key,
      body=message)
print(" [x] Sent %r:%r" % (routing_key, message))
connection.close()
#!/usr/bin/env python
import pika
import sys
connection = pika.BlockingConnection(pika.ConnectionParameters(host='localhost'))
channel = connection.channel()
channel.exchange_declare(exchange='topic_logs',
       exchange_type='topic')
result = channel.queue_declare(exclusive=True)
queue_name = result.method.queue
binding_keys = sys.argv[1:]
# binding_keys = '#'  #接收所有的消息
# binding_keys = ['*.info']  #接收所有以".info"结尾的消息
# binding_keys = ['*.orange.*'] #接收所有含有".orange."的消息
# binding_keys = ['*.*.rabbit', 'lazy.*'] #接收所有含有两个扩展名且结尾是".rabbit"和所有以"lazy."开头的消息
if not binding_keys:
 sys.stderr.write("Usage: %s [binding_key]...\n" % sys.argv[0])
 sys.exit(1)
for binding_key in binding_keys:
 channel.queue_bind(exchange='topic_logs',
      queue=queue_name,
      routing_key=binding_key)
print(' [*] Waiting for logs. To exit press CTRL+C')
def callback(ch, method, properties, body):
 print(" [x] %r:%r" % (method.routing_key, body))
channel.basic_consume(callback,
      queue=queue_name,
      no_ack=True)
channel.start_consuming()

注:当exchange的类型为topic时,发送端与接收端的代码都跟类型为direct时很像(基本只是变一个类型,如果接收消息类型的指定不用表达式,它们几乎一样),但是topic的应用场景更广。

注:rabbitmq指定消息的类型的表达式其实很简单:

'#':代表接收所有的消息(一般单独使用),使用它相当于exchang的类型为fanout。

'*':代表任意一个字符(一般与其他单词配合使用)。

不使用'#'或'*',使用它相当于exchang的类型为direct。

前面介绍的都是一端发送,一端接收的消息传递模式,那么rabbitmq该如何实现客户端和服务端都要发送和接收(即RPC)呢?

我们先来简单了解以下RPC,RPC(Remote Procedure Call)采用客户机/服务器模式。请求程序就是一个客户机,而服务提供程序就是一个服务器。首先,客户机调用进程发送一个有进程参数的调用信息到服务进程,然后等待应答信息。在服务器端,进程保持睡眠状态直到调用信息到达为止。当一个调用信息到达,服务器获得进程参数,计算结果,发送答复信息,然后等待下一个调用信息,最后,客户端调用进程接收答复信息,获得进程结果,然后调用执行继续进行。

例五(通过rabbitmq实现rpc):

先来看以下在rabbitmq中rpc的消息传递模式:

我们以客户端发送一个数字n,服务端计算出斐波那契数列的第n个数的值返回给客户端为例。

import pika
connection = pika.BlockingConnection(pika.ConnectionParameters(host='localhost'))
channel = connection.channel()
channel.queue_declare(queue='rpc_queue')
def fib(n):
 """
 计算斐波那契数列中第n个数的值
 :param n:
 :return:
 """
 if n == 0:
  return 0
 elif n == 1:
  return 1
 else:
  return fib(n-1) + fib(n-2)
def on_request(ch, method, props, body):
 n = int(body)
 print(" [.] fib(%s)" % n)
 response = fib(n)
 ch.basic_publish(exchange='',
      routing_key=props.reply_to, # 使用客户端传来的队列向客户端发送消息的处理结果
      properties=pika.BasicProperties(
       correlation_id = props.correlation_id), # 指明处理消息的id 用于客户端确认
      body=str(response))
 ch.basic_ack(delivery_tag = method.delivery_tag) # 未申明no_ack = True, 消息处理完毕需向rabbitmq确认
channel.basic_qos(prefetch_count=1) # 每次只处理一条消息
channel.basic_consume(on_request, queue='rpc_queue')
print(" [x] Awaiting RPC requests")
channel.start_consuming() # 开始接收消息,未收到消息处于阻塞状态

注1:测试时,先运行rpc_server.py,再运行rpc_client.py。

注2:客户端之所以每隔一秒检测一次服务端有没有返回结果,是因为客户端接收时时无阻塞的,在这一端时间内(不一定是1秒,但执行的任务消耗的时间不要太长)客户端可以执行其他任务提高效率。

注3:为什么客户端和服务端不使用一个队列来传递消息? 答:如果使用一个队列,以客户端为例,它一边在检测这个队列中有没有它要接收的消息,一边又往这个队列里发送消息,会形成死循环。

(PS:本文例中出现的所有代码是做了一些简单修改(方便读者理解)后的rabbitmq官方文档中的代码。)

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • Python通过RabbitMQ服务器实现交换机功能的实例教程

    快速回顾一下RabbitMQ服务器的安装: sudo apt-get install rabbitmq-server Python使用RabbitMQ需要Pika库: sudo pip install pika 好了,接下来我们先看交换机的工作原理:消息发送端先将消息发送给交换机,交换机再将消息发送到绑定的消息队列,而后每个接收端都能从各自的消息队列里接收到信息. 下面用send.py和receive.py来模拟实现交换机的功能.send.py表示发送端,receive.py表示接收端. rec

  • Python+Pika+RabbitMQ环境部署及实现工作队列的实例教程

    rabbitmq中文翻译的话,主要还是mq字母上:Message Queue,即消息队列的意思.前面还有个rabbit单词,就是兔子的意思,和python语言叫python一样,老外还是蛮幽默的.rabbitmq服务类似于mysql.apache服务,只是提供的功能不一样.rabbimq是用来提供发送消息的服务,可以用在不同的应用程序之间进行通信. 安装rabbitmq 先来安装下rabbitmq,在ubuntu 12.04下可以直接通过apt-get安装: sudo apt-get insta

  • python使用rabbitmq实现网络爬虫示例

    编写tasks.py 复制代码 代码如下: from celery import Celeryfrom tornado.httpclient import HTTPClientapp = Celery('tasks')app.config_from_object('celeryconfig')@app.taskdef get_html(url):    http_client = HTTPClient()    try:        response = http_client.fetch(u

  • 详解Python操作RabbitMQ服务器消息队列的远程结果返回

    先说一下笔者这里的测试环境:Ubuntu14.04 + Python 2.7.4 RabbitMQ服务器 sudo apt-get install rabbitmq-server Python使用RabbitMQ需要Pika库 sudo pip install pika 远程结果返回 消息发送端发送消息出去后没有结果返回.如果只是单纯发送消息,当然没有问题了,但是在实际中,常常会需要接收端将收到的消息进行处理之后,返回给发送端. 处理方法描述:发送端在发送信息前,产生一个接收消息的临时队列,该队

  • 利用Python操作消息队列RabbitMQ的方法教程

    前言 RabbitMQ是一个在AMQP基础上完整的,可复用的企业消息系统.他遵循Mozilla Public License开源协议. MQ全称为Message Queue, 消息队列(MQ)是一种应用程序对应用程序的通信方法.应用程序通过读写出入队列的消息(针对应用程序的数据)来通信,而无需专用连接来链接它们.消 息传递指的是程序之间通过在消息中发送数据进行通信,而不是通过直接调用彼此来通信,直接调用通常是用于诸如远程过程调用的技术.排队指的是应用程序通过 队列来通信.队列的使用除去了接收和发

  • 利用Python学习RabbitMQ消息队列

    RabbitMQ可以当做一个消息代理,它的核心原理非常简单:即接收和发送消息,可以把它想象成一个邮局:我们把信件放入邮箱,邮递员就会把信件投递到你的收件人处,RabbitMQ就是一个邮箱.邮局.投递员功能综合体,整个过程就是:邮箱接收信件,邮局转发信件,投递员投递信件到达收件人处. RabbitMQ和邮局的主要区别就是RabbitMQ接收.存储和发送的是二进制数据----消息. rabbitmq基本管理命令: 一步启动Erlang node和Rabbit应用:sudo rabbitmq-serv

  • Python操作RabbitMQ服务器实现消息队列的路由功能

    Python使用Pika库(安装:sudo pip install pika)可以操作RabbitMQ消息队列服务器(安装:sudo apt-get install rabbitmq-server),这里我们来看一下MQ相关的路由功能. 路由键的实现 比如有一个需要给所有接收端发送消息的场景,但是如果需要自由定制,有的消息发给其中一些接收端,有些消息发送给另外一些接收端,要怎么办呢?这种情况下就要用到路由键了. 路由键的工作原理:每个接收端的消息队列在绑定交换机的时候,可以设定相应的路由键.发送

  • rabbitmq(中间消息代理)在python中的使用详解

    在之前的有关线程,进程的博客中,我们介绍了它们各自在同一个程序中的通信方法.但是不同程序,甚至不同编程语言所写的应用软件之间的通信,以前所介绍的线程.进程队列便不再适用了:此种情况便只能使用socket编程了,然而不同程序之间的通信便不再像线程进程之间的那么简单了,要考虑多种情况(比如其中一方断线另一方如何处理:消息群发,多个程序之间的通信等等),如果每遇到一次程序间的通信,便要根据不同情况编写不同的socket,还要维护.完善这个socket这会使得编程人员的工作量大大增加,也使得程序更易崩溃

  • Python中BeautifulSoup模块详解

    目录 前言 安装库 导入库 解析文档示例 提取数据示例 CSS选择器 实例小项目 总结 前言 BeautifulSoup是主要以解析web网页的Python模块,它会提供一些强大的解释器,以解析网页,然后提供一些函数,从页面中提取所需要的数据,目前是Python爬虫中最常用的模块之一. 安装库 在使用前需要安装库,这里建议安装bs4,也就是第四版本,因为根据官方文档第三版的已经停止更新.同时安装lxml解释器 pip3 install bs4 pip3 install lxml 导入库 from

  • python中random模块详解

    Python中的random模块用于生成随机数,它提供了很多函数.常用函数总结如下: 1. random.random() 用于生成一个0到1的随机浮点数: 0 <= n < 1.0 2. random.seed(n) 用于设定种子值,其中的n可以是任意数字.random.random() 生成随机数时,每一次生成的数都是随机的.但是,使用 random.seed(n) 设定好种子之后,在先调用seed(n)时,使用 random() 生成的随机数将会是同一个. 3. random.unifo

  • Python中字符串切片详解

    目录 1.没有步长的简单切片 2.有步长的切片方式 在python中,我们定义好一个字符串,如下所示. 在python中定义个字符串然后把它赋值给一个变量.我们可以通过下标访问单个的字符,跟所有的语言一样,下标从0开始.这个时候呢,我们可以通过切片的方式来截取出我们定义的字符串的一部分.使用切片的时候我们有两种方式:没有步长的简单切片和有步长的切片方式 1.没有步长的简单切片 语法格式是这样的: 首先定义一格字符串,比如叫s,然后给它赋值 截取字符串中的一部分,我们用的语法是 s[ start:

  • 关于Python中的闭包详解

    目录 1.闭包的概念 2.实现一个闭包 3.在闭包中外函数把临时变量绑定给内函数 4.闭包中内函数修改外函数局部变量 5.注意: 6.练习: 总结 1.闭包的概念 请大家跟我理解一下,如果在一个函数的内部定义了另一个函数,外部的我们叫他外函数,内部的我们叫他内函数.闭包: 在一个外函数中定义了一个内函数,内函数里运用了外函数的临时变量,并且外函数的返回值是内函数的引用.这样就构成了一个闭包.一般情况下,在我们认知当中,如果一个函数结束,函数的内部所有东西都会释放掉,还给内存,局部变量都会消失.但

  • python中random随机函数详解

    目录 一.random基础 二.实数分布 2.1 对称分布 2.2 指数分布 2.3 Beta 分布 2.4 Gamma 分布 2.5 高斯分布 2.6 对数正态分布 2.7 正态分布 2.8 冯·米塞斯分布 2.9 帕累托分布 2.10 威布尔分布 总结 加载相关库 import random import seaborn as sns import matplotlib.pyplot as plt # 解决中文不显示的问题 from pylab import mpl mpl.rcParams

  • Python中reduce函数详解

    目录 1 reduce用法 2 reduce与for循环性能对比 reduce函数原本在python2中也是个内置函数,不过在python3中被移到functools模块中. reduce函数先从列表(或序列)中取出2个元素执行指定函数,并将输出结果与第3个元素传入函数,输出结果再与第4个元素传入函数,…,以此类推,直到列表每个元素都取完. 1 reduce用法 对列表元素求和,如果不用reduce,我们一般常用的方法是for循环: def sum_func(arr):     if len(a

  • Python 中 Meta Classes详解

    接触过 Django 的同学都应该十分熟悉它的 ORM 系统.对于 python 新手而言,这是一项几乎可以被称作"黑科技"的特性:只要你在models.py中随便定义一个Model的子类,Django 便可以: 获取它的字段定义,并转换成表结构 读取Meta内部类,并转化成相应的配置信息.对于特殊的Model(如abstract.proxy),还要进行相应的转换 为没有定义objects的Model加上一个默认的Manager 开发之余,我也曾脑补过其背后的原理.曾经,我认为是这样的

  • RabbitMQ 的消息持久化与 Spring AMQP 的实现详解

    前言 要从奔溃的 RabbitMQ 中恢复的消息,我们需要做消息持久化.如果消息要从 RabbitMQ 奔溃中恢复,那么必须满足三点,且三者缺一不可. 交换器必须是持久化. 队列必须是持久化的. 消息必须是持久化的. 原生的实现方式 原生的 RabbitMQ 客户端需要完成三个步骤. 第一步,交换器的持久化. // 参数1 exchange :交换器名 // 参数2 type :交换器类型 // 参数3 durable :是否持久化 channel.exchangeDeclare(EXCHANG

  • Python 中的 else详解

    我们都知道 Python 中else的基本用法是在条件控制语句中的 if...elif...else...,但是 else 还有两个其它的用途,一是用于循环的结尾,另一个是用在错误处理的 try 中.这原本是 Python 的标准语法,但由于和大部分其它编程语言的习惯不太一样,致使人们有意或无意地忽略了这些用法.另外,对于这些用法是否符合 0×00 The Zen of Python 的原则以及该不该广泛使用也存在很多争议.例如在我看到的两本书里(Effective Python VS Writ

随机推荐