Python基于OpenCV实现人脸检测并保存

本文实例为大家分享了Python基于OpenCV实现人脸检测,并保存的具体代码,供大家参考,具体内容如下

安装opencv

如果安装了pip的话,Opencv的在windows的安装可以直接通过cmd命令pip install opencv-python(只需要主要模块),也可以输入命令pip install opencv-contrib-python(如果需要main模块和contrib模块)
详情可以点击此处

导入opencv

import cv2

所有包都包含haarcascade文件。这个文件很重要!!!
cv2.data.haarcascades可以用作数据文件夹的快捷方式。例如:

cv2.CascadeClassifier(cv2.data.haarcascades + "haarcascade_frontalface_default.xml")

代码

#-*- coding: utf-8 -*-
# import openCV的库
import cv2
import os, math, operator
from PIL import Image
from functools import reduce

###调用电脑摄像头检测人脸并截图

def CatchPICFromVideo(window_name, path_name):
 cv2.namedWindow(window_name)

 #电脑摄像头
 cap = cv2.VideoCapture(0)

 #告诉OpenCV使用人脸识别分类器
 classfier = cv2.CascadeClassifier(cv2.data.haarcascades + "haarcascade_frontalface_default.xml")

 #检测人脸后要画的边框的颜色
 color = (0, 255, 0)

 while cap.isOpened():
  ok, frame = cap.read() #读取一帧数据
  if not ok:
   break

  grey = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) #将当前桢图像转换成灰度图像

  #人脸检测,1.2和2分别为图片缩放比例和需要检测的有效点数
  faceRects = classfier.detectMultiScale(grey, scaleFactor = 1.2, minNeighbors = 3, minSize = (32, 32))
  if len(faceRects) > 0:   #大于0则检测到人脸
   for faceRect in faceRects: #单独框出每一张人脸
    x, y, w, h = faceRect

     #画出矩形框
    cv2.rectangle(frame, (x - 10, y - 10), (x + w + 10, y + h + 10), color, 2)

    k = cv2.waitKey(100) #每0.1秒读一次键盘
    if k == ord("z") or k == ord("Z"): #如果输入z
     #将当前帧保存为图片
     img_name = path_name
     print(img_name)
     image = frame[y - 10: y + h + 10, x - 10: x + w + 10]
     cv2.imwrite(img_name, image,[int(cv2.IMWRITE_PNG_COMPRESSION), 9])
     break  

  #显示图像
  cv2.imshow(window_name, frame)
  #退出摄像头界面
  c = cv2.waitKey(100)
  if c == ord("q") or c == ord("Q"):
   break

 #释放摄像头并销毁所有窗口
 cap.release()
 cv2.destroyAllWindows()

os.system("cls") #清屏
recogname = "recogface.jpg" #预存的人脸文件
CatchPICFromVideo("get face",recogname)

功能:

虽然能框住人脸,但是效率还不是很高。
按Z或z可以将框住的人脸截取保存

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • Python3.6.0+opencv3.3.0人脸检测示例

    网上有很多关于Python+opencv人脸检测的例子,并大都附有源程序.但是在实际使用时依然会遇到这样或者那样的问题,在这里给出常见的两种问题及其解决方法. 先给出源代码:(如下) import cv2 import numpy as np cv2.namedWindow("test") cap=cv2.VideoCapture(0) success,frame=cap.read() classifier=cv2.CascadeClassifier("haarcascade

  • Python+OpenCV人脸检测原理及示例详解

    关于opencv OpenCV 是 Intel 开源计算机视觉库 (Computer Version) .它由一系列 C 函数和少量 C++ 类构成,实现了图像处理和计算机视觉方面的很多通用算法. OpenCV 拥有包括 300 多个 C 函数的跨平台的中.高层 API .它不依赖于其它的外部库 -- 尽管也可以使用某些外部库. OpenCV 对非商业应用和商业应用都是免费 的.同时 OpenCV 提供了对硬件的访问,可以直接访问摄像头,并且 opencv 还提供了一个简单的 GUI(graph

  • Python基于OpenCV实现视频的人脸检测

    本文实例为大家分享了基于OpenCV实现视频的人脸检测具体代码,供大家参考,具体内容如下 前提条件 1.摄像头 2.已安装Python和OpenCV3 代码 import cv2 import sys import logging as log import datetime as dt from time import sleep cascPath = "haarcascade_frontalface_default.xml" faceCascade = cv2.CascadeCla

  • python利用OpenCV2实现人脸检测

    最近,带领我的学生进行一个URTP项目设计,需要进行人脸识别.由于现在的OpenCV已经到了2.X版本,因此就不想用原来的1.X版本的代码,而网上存在的代码都是1.X版本的代码,尝试自己写一段2.X版本的代码,反复查阅资料,今天终于测试成功(很明显2.X版本的代码要比1.X的代码更简单),供大家好参考,代码如下:(2017年5月12日在python3.6.1下做一简单的修改) import cv2 import numpy as np cv2.namedWindow("test")#命

  • python结合opencv实现人脸检测与跟踪

    模式识别课上老师留了个实验,在VC++环境下利用OpenCV库编程实现人脸检测与跟踪. 然后就开始下载opencv和vs2012,再然后,配置了好几次还是配置不成功,这里不得不吐槽下微软,软件做这么大,这么难用真的好吗? 于是就尝试了一下使用python完成实验任务,大概过程就是这样子的: 首先,配置运行环境: 下载opencv和python的比较新的版本,推荐opencv2.4.X和python2.7.X. 直接去官网下载就ok了,python安装时一路next就行,下载的opencv.exe

  • Linux下python与C++使用dlib实现人脸检测

    python 与 C++ dlib人脸检测结果对比,供大家参考,具体内容如下 说明: 由于项目需求发现Linux下c++使用dlib进行人脸检测和python使用dlib检测,得到的结果出入比较大,于是写了测试用例,发现影响结果的原因有但不限于: 1.dlib版本不同(影响不大,几个像素的差别) 2.dlib 人脸检测中detector()第二个参数的设置测试结果如下: python PDlib.py: # -*- coding: utf-8 -*- import sys import cv2

  • python中使用OpenCV进行人脸检测的例子

    OpenCV的人脸检测功能在一般场合还是不错的.而ubuntu正好提供了python-opencv这个包,用它可以方便地实现人脸检测的代码. 写代码之前应该先安装python-opencv: 复制代码 代码如下: $ sudo apt-get install python-opencv 具体原理就不多说了,可以参考一下这篇文章.直接上源码. 复制代码 代码如下: #!/usr/bin/python# -*- coding: UTF-8 -*- # face_detect.py # Face De

  • 50行Python代码实现人脸检测功能

    现在的人脸识别技术已经得到了非常广泛的应用,支付领域.身份验证.美颜相机里都有它的应用.用iPhone的同学们应该对下面的功能比较熟悉 iPhone的照片中有一个"人物"的功能,能够将照片里的人脸识别出来并分类,背后的原理也是人脸识别技术. 这篇文章主要介绍怎样用Python实现人脸检测.人脸检测是人脸识别的基础.人脸检测的目的是识别出照片里的人脸并定位面部特征点,人脸识别是在人脸检测的基础上进一步告诉你这个人是谁. 好了,介绍就到这里.接下来,开始准备我们的环境. 准备工作 本文的人

  • python opencv人脸检测提取及保存方法

    注意这里提取到的人脸图片的保存地址要改成自己要保存的地址 opencv人脸的检测模型的路径也要更改为自己安装的opencv的人脸检测模型的路径 import cv2 save_path = 'F:\\face_photo_save\\chenym\\' cascade = cv2.CascadeClassifier("D:\\opencv249\\opencv\\sources\\data\\haarcascades\\haarcascade_frontalface_alt_tree.xml&q

  • python 3利用Dlib 19.7实现摄像头人脸检测特征点标定

    Python 3 利用 Dlib 19.7 实现摄像头人脸检测特征点标定 0.引言 利用python开发,借助Dlib库捕获摄像头中的人脸,进行实时特征点标定: 图1 工程效果示例(gif) 图2 工程效果示例(静态图片) (实现比较简单,代码量也比较少,适合入门或者兴趣学习.) 1.开发环境 python: 3.6.3 dlib: 19.7 OpenCv, numpy import dlib # 人脸识别的库dlib import numpy as np # 数据处理的库numpy impor

随机推荐