Python中的几种矩阵乘法(小结)

一.  np.dot()

1.同线性代数中矩阵乘法的定义。np.dot(A, B)表示:

  • 对二维矩阵,计算真正意义上的矩阵乘积。
  • 对于一维矩阵,计算两者的内积。

2.代码

【code】

import numpy as np

# 2-D array: 2 x 3
two_dim_matrix_one = np.array([[1, 2, 3], [4, 5, 6]])
# 2-D array: 3 x 2
two_dim_matrix_two = np.array([[1, 2], [3, 4], [5, 6]])

two_multi_res = np.dot(two_dim_matrix_one, two_dim_matrix_two)
print('two_multi_res: %s' %(two_multi_res))

# 1-D array
one_dim_vec_one = np.array([1, 2, 3])
one_dim_vec_two = np.array([4, 5, 6])
one_result_res = np.dot(one_dim_vec_one, one_dim_vec_two)
print('one_result_res: %s' %(one_result_res))

【result】

two_multi_res: [[22 28]
                [49 64]]
one_result_res: 32

二. np.multiply()或 *

1.在Python中,实现对应元素相乘(element-wise product),有2种方式,

  • 一个是np.multiply()
  • 另外一个是 *

2.代码

【code】

import numpy as np

# 2-D array: 2 x 3
two_dim_matrix_one = np.array([[1, 2, 3], [4, 5, 6]])
another_two_dim_matrix_one = np.array([[7, 8, 9], [4, 7, 1]])

# 对应元素相乘 element-wise product
element_wise = two_dim_matrix_one * another_two_dim_matrix_one
print('element wise product: %s' %(element_wise))

# 对应元素相乘 element-wise product
element_wise_2 = np.multiply(two_dim_matrix_one, another_two_dim_matrix_one)
print('element wise product: %s' % (element_wise_2))

【result】

element wise product: [[ 7 16 27]
                       [16 35  6]]
element wise product: [[ 7 16 27]
                       [16 35  6]]

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • python实现矩阵乘法的方法

    本文实例讲述了python实现矩阵乘法的方法.分享给大家供大家参考.具体实现方法如下: def matrixMul(A, B): res = [[0] * len(B[0]) for i in range(len(A))] for i in range(len(A)): for j in range(len(B[0])): for k in range(len(B)): res[i][j] += A[i][k] * B[k][j] return res def matrixMul2(A, B):

  • python中数组和矩阵乘法及使用总结(推荐)

    Matrix是Array的一个小的分支,包含于Array.所以matrix 拥有array的所有特性. 但在数组乘和矩阵乘时,两者各有不同,如果a和b是两个matrices,那么a*b,就是矩阵积 如果a,b是数组的话,则a*b是数组的运算 1.对数组的操作 >>> import numpy as np >>> a=np.array([[1,2,3],[4,5,6],[7,8,9]]) >>> a array([[1, 2, 3], [4, 5, 6]

  • Python中的几种矩阵乘法(小结)

    一.  np.dot() 1.同线性代数中矩阵乘法的定义.np.dot(A, B)表示: 对二维矩阵,计算真正意义上的矩阵乘积. 对于一维矩阵,计算两者的内积. 2.代码 [code] import numpy as np # 2-D array: 2 x 3 two_dim_matrix_one = np.array([[1, 2, 3], [4, 5, 6]]) # 2-D array: 3 x 2 two_dim_matrix_two = np.array([[1, 2], [3, 4],

  • Python中列表与元组的乘法操作示例

    本文实例讲述了Python中列表与元组的乘法操作.分享给大家供大家参考,具体如下: 直接上code吧,还可以这么玩儿 列表乘法: li=[1,] li=li*3 print(li) out: [1, 1, 1] 元组乘法: >>> t=(1,2) >>> t*3 (1, 2, 1, 2, 1, 2) 但字典,集合不能这么玩 例如: >>> dict1={'k1':1,'k2':2} >>> dict1*2 #报错 Traceback

  • Python 脚本的三种执行方式小结

    1.交互模式下执行 Python,这种模式下,无需创建脚本文件,直接在 Python解释器的交互模式下编写对应的 Python 语句即可. 1)打开交互模式的方式: Windows下: 在开始菜单找到"命令提示符",打开,就进入到命令行模式: 在命令行模式输入: python 即可进入 Python 的交互模式 Linux 下: 直接在终端输入 python,如果是按装了 python3 ,则根据自己建的软连接的名字进入对应版本的 Python 交互环境,例如我建立软连接使用的 pyt

  • Python中re模块的元字符使用小结

    目录 类别1:匹配单个字符的元字符 方括号( [] ) 字符集 点 ( . ) 通配符 \w 和 \W 单词字符匹配 \d 和 \D 字符十进制数字匹配 \s 和 \S 字符空格匹配 混合使用 \w, \W, \d, \D, \s, 和\S 类别2:转义元字符 反斜杠 ( \ ) 转义元字符 类别3:锚点 $ 和\Z 字符串的结尾匹配项 \b 和 \B 单词匹配 类别4:量词 * 匹配前面的子表达式零次或多次 + 匹配前面的子表达式一次或多次 ? 匹配前面的子表达式零次或一次 .*?.+?.??

  • 简单了解Python中的几种函数

    几个特殊的函数(待补充) python是支持多种范型的语言,可以进行所谓函数式编程,其突出体现在有这么几个函数: filter.map.reduce.lambda.yield lambda >>> g = lambda x,y:x+y #x+y,并返回结果 >>> g(3,4) 7 >>> (lambda x:x**2)(4) #返回4的平方 16 lambda函数的使用方法: 在lambda后面直接跟变量 变量后面是冒号 冒号后面是表达式,表达式计算

  • 详解Python中的四种队列

    队列是一种只允许在一端进行插入操作,而在另一端进行删除操作的线性表. 在Python文档中搜索队列(queue)会发现,Python标准库中包含了四种队列,分别是queue.Queue / asyncio.Queue / multiprocessing.Queue / collections.deque. collections.deque deque是双端队列(double-ended queue)的缩写,由于两端都能编辑,deque既可以用来实现栈(stack)也可以用来实现队列(queue

  • Python中的四种交换数值的方法解析

    这篇文章主要介绍了Python中的四种交换数值的方法解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 交换两个变量的值方法,这个面试题如果只写一种当然很简单,没什么可以说的. 今天这个面试是问大家有几种办法来实现交换两个变量的值. 在没开始看具体答案前,你可以先想想看 下面分别来说说这几种方法 方法一 通过新添加中间变量temp的方式,这个方法是最简单的,每个语言都适用. 方法二 Python独有的方法,一行代码就能搞定,直接将两个变量放到元

  • 详解python中的三种命令行模块(sys.argv,argparse,click)

    Python作为一门脚本语言,经常作为脚本接受命令行传入参数,Python接受命令行参数大概有三种方式.因为在日常工作场景会经常使用到,这里对这几种方式进行总结. 命令行参数模块 这里命令行参数模块平时工作中用到最多就是这三种模块:sys.argv,argparse,click.sys.argv和argparse都是内置模块,click则是第三方模块. sys.argv模块(内置模块) 先看一个简单的示例: #!/usr/bin/python import sys def hello(name,

  • python中判断集合范围的方法小结

    我们在比较数值大小的时候,会使用一些比较符号来进行判断.在python集合中也有这样的比较,但有一点要注意的是,我们比较的是集合之间的包容性,而不是简单数值之间的大小比较,这点在文章的开头就进行明确,也是对于我们python初学者的提醒. 集合可以使用大于(>).小于(<).大于等于(>=).小于等于(<=).等于(==).不等于(!=)来判断某个集合是否完全包含于另一个集合,也可以使用子父集判断函数. 定义三个集合s1,s2,s3: >>> s1=set([1,

  • SQL中的三种去重方法小结

    目录 distinct group by row_number 在使用SQL提数的时候,常会遇到表内有重复值的时候,比如我们想得到 uv (独立访客),就需要做去重. 在 MySQL 中通常是使用 distinct 或 group by子句,但在支持窗口函数的 sql(如Hive SQL.Oracle等等) 中还可以使用 row_number 窗口函数进行去重. 举个栗子,现有这样一张表 task: task_id order_id start_time 1 123 2020-01-05 1 2

随机推荐