详解python异步编程之asyncio(百万并发)

前言:python由于GIL(全局锁)的存在,不能发挥多核的优势,其性能一直饱受诟病。然而在IO密集型的网络编程里,异步处理比同步处理能提升成百上千倍的效率,弥补了python性能方面的短板,如最新的微服务框架japronto,resquests per second可达百万级。

python还有一个优势是库(第三方库)极为丰富,运用十分方便。asyncio是python3.4版本引入到标准库,python2x没有加这个库,毕竟python3x才是未来啊,哈哈!python3.5又加入了async/await特性。

在学习asyncio之前,我们先来理清楚同步/异步的概念:

同步是指完成事务的逻辑,先执行第一个事务,如果阻塞了,会一直等待,直到这个事务完成,再执行第二个事务,顺序执行。。。

异步是和同步相对的,异步是指在处理调用这个事务的之后,不会等待这个事务的处理结果,直接处理第二个事务去了,通过状态、通知、回调来通知调用者处理结果。

一、asyncio

下面通过举例来对比同步代码和异步代码编写方面的差异,其次看下两者性能上的差距,我们使用sleep(1)模拟耗时1秒的io操作。

同步代码:

import time

def hello():
  time.sleep(1)

def run():
  for i in range(5):
    hello()
    print('Hello World:%s' % time.time()) # 任何伟大的代码都是从Hello World 开始的!
if __name__ == '__main__':
  run()

输出:(间隔差不多是1s)

Hello World:1527595175.4728756
Hello World:1527595176.473001
Hello World:1527595177.473494
Hello World:1527595178.4739306
Hello World:1527595179.474482

异步代码:

import time
import asyncio

# 定义异步函数
async def hello():
  asyncio.sleep(1)
  print('Hello World:%s' % time.time())

def run():
  for i in range(5):
    loop.run_until_complete(hello())

loop = asyncio.get_event_loop()
if __name__ =='__main__':
  run()

输出:

Hello World:1527595104.8338501
Hello World:1527595104.8338501
Hello World:1527595104.8338501
Hello World:1527595104.8338501
Hello World:1527595104.8338501

async def 用来定义异步函数,其内部有异步操作。每个线程有一个事件循环,主线程调用asyncio.get_event_loop()时会创建事件循环,你需要把异步的任务丢给这个循环的run_until_complete()方法,事件循环会安排协同程序的执行。

二、aiohttp

如果需要并发http请求怎么办呢,通常是用requests,但requests是同步的库,如果想异步的话需要引入aiohttp。这里引入一个类,from aiohttp import ClientSession,首先要建立一个session对象,然后用session对象去打开网页。session可以进行多项操作,比如post, get, put, head等。

基本用法:

async with ClientSession() as session:
async with session.get(url) as response:

aiohttp异步实现的例子:

import asyncio
from aiohttp import ClientSession

tasks = []
url = "https://www.baidu.com/{}"
async def hello(url):
  async with ClientSession() as session:
    async with session.get(url) as response:
      response = await response.read()
      print(response)

if __name__ == '__main__':
  loop = asyncio.get_event_loop()
  loop.run_until_complete(hello(url))

首先async def 关键字定义了这是个异步函数,await 关键字加在需要等待的操作前面,response.read()等待request响应,是个耗IO操作。然后使用ClientSession类发起http请求。

多链接异步访问

如果我们需要请求多个URL该怎么办呢,同步的做法访问多个URL只需要加个for循环就可以了。但异步的实现方式并没那么容易,在之前的基础上需要将hello()包装在asyncio的Future对象中,然后将Future对象列表作为任务传递给事件循环。

import time
import asyncio
from aiohttp import ClientSession

tasks = []
url = "https://www.baidu.com/{}"
async def hello(url):
  async with ClientSession() as session:
    async with session.get(url) as response:
      response = await response.read()
#      print(response)
      print('Hello World:%s' % time.time())

def run():
  for i in range(5):
    task = asyncio.ensure_future(hello(url.format(i)))
    tasks.append(task)

if __name__ == '__main__':
  loop = asyncio.get_event_loop()
  run()
  loop.run_until_complete(asyncio.wait(tasks))

输出:

Hello World:1527754874.8915546
Hello World:1527754874.899039
Hello World:1527754874.90004
Hello World:1527754874.9095392
Hello World:1527754874.9190395

收集http响应

好了,上面介绍了访问不同链接的异步实现方式,但是我们只是发出了请求,如果要把响应一一收集到一个列表中,最后保存到本地或者打印出来要怎么实现呢,可通过asyncio.gather(*tasks)将响应全部收集起来,具体通过下面实例来演示。

import time
import asyncio
from aiohttp import ClientSession

tasks = []
url = "https://www.baidu.com/{}"
async def hello(url):
  async with ClientSession() as session:
    async with session.get(url) as response:
#      print(response)
      print('Hello World:%s' % time.time())
      return await response.read()

def run():
  for i in range(5):
    task = asyncio.ensure_future(hello(url.format(i)))
    tasks.append(task)
  result = loop.run_until_complete(asyncio.gather(*tasks))
  print(result)

if __name__ == '__main__':
  loop = asyncio.get_event_loop()
  run() 

输出:

Hello World:1527765369.0785167
Hello World:1527765369.0845182
Hello World:1527765369.0910277
Hello World:1527765369.0920424
Hello World:1527765369.097017
[b'<!DOCTYPE html>\r\n<!--STATUS OK-->\r\n<html>\r\n<head>\r\n......

异常解决

假如你的并发达到1000个,程序会报错:ValueError: too many file descriptors in select()。这个报错的原因是因为 Python 调取的 select 对打开的文件字符有最大长度限制。这里我们有两种方法解决这个问题:1.我们可以需要限制并发数量。一次不要塞那么多任务,或者限制最大并发数量。2.我们可以使用回调的方式。这里个人推荐限制并发数的方法,设置并发数为500或者600,处理速度更快。

#coding:utf-8
import time,asyncio,aiohttp

url = 'https://www.baidu.com/'
async def hello(url,semaphore):
  async with semaphore:
    async with aiohttp.ClientSession() as session:
      async with session.get(url) as response:
        return await response.read()

async def run():
  semaphore = asyncio.Semaphore(500) # 限制并发量为500
  to_get = [hello(url.format(),semaphore) for _ in range(1000)] #总共1000任务
  await asyncio.wait(to_get)

if __name__ == '__main__':
#  now=lambda :time.time()
  loop = asyncio.get_event_loop()
  loop.run_until_complete(run())
  loop.close()

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • python aiohttp的使用详解

    1.aiohttp的简单使用(配合asyncio模块) import asyncio,aiohttp async def fetch_async(url): print(url) async with aiohttp.request("GET",url) as r: reponse = await r.text(encoding="utf-8") #或者直接await r.read()不编码,直接读取,适合于图像等无法编码文件 print(reponse) task

  • python高并发异步服务器核心库forkcore使用方法

    1 拷贝下面的代码到一个文件,并命名为forkcore.py 复制代码 代码如下: import osimport threadingimport selectimport socket class ds_forkcore(object): #async IO(epoll)    def ds_epoll(self):        epoll=select.epoll()        epoll.register(self.s.fileno(),select.EPOLLIN|select.E

  • python实现可以断点续传和并发的ftp程序

    前言 下载文件时,最怕中途断线,无法成功下载完整的文件.断点续传就是从文件中断的地方接下去下载,而不必重新下载.这项功能对于下载较大文件时非常有用.那么这篇文章就来给大家分享如何利用python实现可以断点续传和并发的ftp程序. 一.要求 1.用户md5认证 2.支持多用户同时登陆(并发) 3.进入用户的命令行模式,支持cd切换目录,ls查看目录子文件 4.执行命令(ipconfig) 5.传输文件: a.支持断点续传 b.传输中显示进度条 二.思路 1.客户端用户登录和注册: a.客户端仅提

  • Python多进程并发(multiprocessing)用法实例详解

    本文实例讲述了Python多进程并发(multiprocessing)用法.分享给大家供大家参考.具体分析如下: 由于Python设计的限制(我说的是咱们常用的CPython).最多只能用满1个CPU核心. Python提供了非常好用的多进程包multiprocessing,你只需要定义一个函数,Python会替你完成其他所有事情.借助这个包,可以轻松完成从单进程到并发执行的转换. 1.新建单一进程 如果我们新建少量进程,可以如下: import multiprocessing import t

  • python实现多线程的方式及多条命令并发执行

    一.概念介绍 Thread 是threading模块中最重要的类之一,可以使用它来创建线程.有两种方式来创建线程:一种是通过继承Thread类,重写它的run方法:另一种是创建一个threading.Thread对象,在它的初始化函数(__init__)中将可调用对象作为参数传入. Thread模块是比较底层的模块,Threading模块是对Thread做了一些包装的,可以更加方便的被使用. 另外在工作时,有时需要让多条命令并发的执行, 而不是顺序执行. 二.代码样例 #!/usr/bin/py

  • python并发编程之多进程、多线程、异步和协程详解

    最近学习python并发,于是对多进程.多线程.异步和协程做了个总结. 一.多线程 多线程就是允许一个进程内存在多个控制权,以便让多个函数同时处于激活状态,从而让多个函数的操作同时运行.即使是单CPU的计算机,也可以通过不停地在不同线程的指令间切换,从而造成多线程同时运行的效果. 多线程相当于一个并发(concunrrency)系统.并发系统一般同时执行多个任务.如果多个任务可以共享资源,特别是同时写入某个变量的时候,就需要解决同步的问题,比如多线程火车售票系统:两个指令,一个指令检查票是否卖完

  • Python控制多进程与多线程并发数总结

    一.前言 本来写了脚本用于暴力破解密码,可是1秒钟尝试一个密码2220000个密码我的天,想用多线程可是只会一个for全开,难道开2220000个线程吗?只好学习控制线程数了,官方文档不好看,觉得结构不够清晰,网上找很多文章也都不很清晰,只有for全开线程,没有控制线程数的具体说明,最终终于根据多篇文章和官方文档算是搞明白基础的多线程怎么实现法了,怕长时间不用又忘记,找着麻烦就贴这了,跟我一样新手也可以参照参照. 先说进程和线程的区别: 地址空间:进程内的一个执行单元;进程至少有一个线程;它们共

  • Python aiohttp百万并发极限测试实例分析

    本文实例讲述了Python aiohttp百万并发极限测试.分享给大家供大家参考,具体如下: 本文将测试python aiohttp的极限,同时测试其性能表现,以分钟发起请求数作为指标.大家都知道,当应用到网络操作时,异步的代码表现更优秀,但是验证这个事情,同时搞明白异步到底有多大的优势以及为什么会有这样的优势仍然是一件有趣的事情.为了验证,我将发起1000000请求,用aiohttp客户端.aiohttp每分钟能够发起多少请求?你能预料到哪些异常情况以及崩溃会发生,当你用比较粗糙的脚本去发起如

  • Python中利用aiohttp制作异步爬虫及简单应用

    摘要: 简介 asyncio可以实现单线程并发IO操作,是Python中常用的异步处理模块.关于asyncio模块的介绍,笔者会在后续的文章中加以介绍,本文将会讲述一个基于asyncio实现的HTTP框架--aiohttp,它可以帮助我们异步地实现HTTP请求,从而使得我们的程序效率大大提高. 简介 asyncio可以实现单线程并发IO操作,是Python中常用的异步处理模块.关于asyncio模块的介绍,笔者会在后续的文章中加以介绍,本文将会讲述一个基于asyncio实现的HTTP框架--ai

  • 详解python并发获取snmp信息及性能测试

    python & snmp 用python获取snmp信息有多个现成的库可以使用,其中比较常用的是netsnmp和pysnmp两个库.网上有较多的关于两个库的例子. 本文重点在于如何并发的获取snmp的数据,即同时获取多台机器的snmp信息. netsnmp 先说netsnmp.python的netsnmp,其实是来自于net-snmp包. python通过一个c文件调用net-snmp的接口获取数据. 因此,在并发获取多台机器的时候,不能够使用协程获取.因为使用协程,在get数据的时候,协程会

  • Python实现多并发访问网站功能示例

    本文实例讲述了Python实现多并发访问网站功能.分享给大家供大家参考,具体如下: # Filename:visitweb_threads.py # Description:python visit web, get startTime, endTime, everytimes spentTime,threading import threading import urllib import time import datetime print 'num web SpentTime' def P

  • Python中asyncio与aiohttp入门教程

    很多朋友对异步编程都处于"听说很强大"的认知状态.鲜有在生产项目中使用它.而使用它的同学,则大多数都停留在知道如何使用 Tornado.Twisted.Gevent 这类异步框架上,出现各种古怪的问题难以解决.而且使用了异步框架的部分同学,由于用法不对,感觉它并没牛逼到哪里去,所以很多同学做 Web 后端服务时还是采用 Flask.Django等传统的非异步框架. 从上两届 PyCon 技术大会看来,异步编程已经成了 Python 生态下一阶段的主旋律.如新兴的 Go.Rust.Eli

随机推荐