Opencv+Python实现图像运动模糊和高斯模糊的示例

运动模糊:由于相机和物体之间的相对运动造成的模糊,又称为动态模糊

Opencv+Python实现运动模糊,主要用到的函数是cv2.filter2D()

# coding: utf-8
import numpy as np
import cv2
def motion_blur(image, degree=12, angle=45):
  image = np.array(image)
  # 这里生成任意角度的运动模糊kernel的矩阵, degree越大,模糊程度越高
  M = cv2.getRotationMatrix2D((degree / 2, degree / 2), angle, 1)
  motion_blur_kernel = np.diag(np.ones(degree))
  motion_blur_kernel = cv2.warpAffine(motion_blur_kernel, M, (degree, degree))
  motion_blur_kernel = motion_blur_kernel / degree
  blurred = cv2.filter2D(image, -1, motion_blur_kernel)
  # convert to uint8
  cv2.normalize(blurred, blurred, 0, 255, cv2.NORM_MINMAX)
  blurred = np.array(blurred, dtype=np.uint8)
  return blurred
img = cv2.imread('./9.jpg')
img_ = motion_blur(img)
cv2.imshow('Source image',img)
cv2.imshow('blur image',img_)
cv2.waitKey()

原图:

运动模糊效果:

高斯模糊:图像与二维高斯分布的概率密度函数做卷积,模糊图像细节

Opencv+Python实现高斯模糊,主要用到的函数是cv2.GaussianBlur():

# coding: utf-8
import numpy as np
import cv2
img = cv2.imread('./9.jpg')
img_ = cv2.GaussianBlur(img, ksize=(9, 9), sigmaX=0, sigmaY=0)
cv2.imshow('Source image',img)
cv2.imshow('blur image',img_)
cv2.waitKey()

高斯模糊效果:

总结

以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作具有一定的参考学习价值,谢谢大家对我们的支持。如果你想了解更多相关内容请查看下面相关链接

(0)

相关推荐

  • python opencv判断图像是否为空的实例

    如下所示: import cv2 im = cv2.imread('2.jpg') if im is None: print("图像为空") # cv2.imshow("ss", im) # cv2.waitKey(0) 以上这篇python opencv判断图像是否为空的实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们.

  • Python+OpenCV图片局部区域像素值处理详解

    背景故事:我需要对一张图片做一些处理,是在图像像素级别上的数值处理,以此来反映图片中特定区域的图像特征,网上查了很多,大多关于opencv的应用教程帖子基本是停留在打开图片,提取像素重新写入图片啊之类的基本操作,我是要取图片中的特定区域再提取它的像素值,作为一个初学者开始接触opencv简直一脸懵,慢慢摸索着知道了opencv的一些函数是可以实现的像SetImageROI()函数设置ROI区域,即感兴趣区域,就很好用啊,总之最后是实现了自己想要的功能.现在看个程序确实是有点挫,也有好多多余的没必

  • opencv与numpy的图像基本操作

    1. 像素基本操作 1.1 读取.修改像素 可以通过[行,列]坐标来访问像素点数据,对于多通道数据,返回一个数组,包含所有通道的值,对于单通道数据(如gray),返回指定坐标的值,也可以通过 [行,列,通道index] 来访问某坐标某通道的值. >>> import cv2 >>> import numpy as np >>> img = cv2.imread('messi5.jpg') >>> px = img[100,100] &

  • Opencv-Python图像透视变换cv2.warpPerspective的示例

    Opencv-Python图像透视变换cv2.warpPerspective 代码如下: # -*- coding:utf-8 -*- import cv2 import numpy as np import sys img = cv2.imread('test.jpg') # cv2.imshow("original", img) # 可选,扩展图像,保证内容不超出可视范围 img = cv2.copyMakeBorder(img, 200, 200, 200, 200, cv2.B

  • ubuntu下编译安装opencv的方法

    简易安装opencv2: conda install --channel https://conda.anaconda.org/menpo opencv 或: sudo apt-get install libopencv-dev python-opencv 简易安装opencv3: pip install opencv-python 或: pip install opencv-python==3.1.0 简易安装方式是从库中安装编译好了的Opencv,这种安装方式简单方便,缺点是容易在使用中出现

  • python用opencv批量截取图像指定区域的方法

    代码如下 import os import cv2 for i in range(1,201): if i==169 or i==189: i = i+1 pth = "C:\\Users\\Desktop\\asd\\"+str(i)+".bmp" image = cv2.imread(pth) //从指定路径读取图像 cropImg = image[600:1200,750:1500] //获取感兴趣区域 cv2.imwrite("C:\\Users\

  • OpenCV HSV颜色识别及HSV基本颜色分量范围

    一般对颜色空间的图像进行有效处理都是在HSV空间进行的,然后对于基本色中对应的HSV分量需要给定一个严格的范围,下面是通过实验计算的模糊范围(准确的范围在网上都没有给出). H:  0 - 180 S:  0 - 255 V:  0 - 255 此处把部分红色归为紫色范围: 目前在计算机视觉领域存在着较多类型的颜色空间(color space).HSL和HSV是两种最常见的圆柱坐标表示的颜色模型,它重新影射了RGB模型,从而能够视觉上比RGB模型更具有视觉直观性. HSV颜色空间  HSV(hu

  • OpenCV+Python识别车牌和字符分割的实现

    本篇文章主要基于python语言和OpenCV库(cv2)进行车牌区域识别和字符分割,开篇之前针对在python中安装opencv的环境这里不做介绍,可以自行安装配置! 车牌号检测需要大致分为四个部分: 1.车辆图像获取 2.车牌定位. 3.车牌字符分割 4.车牌字符识别 具体介绍 车牌定位需要用到的是图片二值化为黑白后进canny边缘检测后多次进行开运算与闭运算用于消除小块的区域,保留大块的区域,后用cv2.rectangle选取矩形框,从而定位车牌位置 车牌字符的分割前需要准备的是只保留车牌

  • Python基于opencv调用摄像头获取个人图片的实现方法

    接触图像领域的应该对于opencv都不会感到陌生,这个应该算是功能十分强劲的一个算法库了,当然了,使用起来也是很方便的,之前使用Windows7的时候出现多该库难以安装成功的情况,现在这个问题就不存在了,需要安装包的话可以去我的资源中下载使用,使用pip安装方式十分地便捷. 今天主要是基于opencv模块来调用笔记本的内置摄像头,然后从视频流中获取到人脸的图像数据用于之后的人脸识别项目,也就是为了构建可用的数据集.整个实现过程并不复杂,具体如下: #!usr/bin/env python #en

  • 基于OpenCV python3实现证件照换背景的方法

    简述 生活中经常要用到各种要求的证件照电子版,红底,蓝底,白底等,大部分情况我们只有其中一种,所以通过技术手段进行合成,用ps处理证件照,由于技术不到位,有瑕疵,所以想用python&openCV通过代码的方式实现背景颜色替换,加强一下对于openCV的学习,锻炼一下编码水平. 软件环境: python3.5 opencv2 windows 10 图像载入 导入opencv库,使用imread函数读取图片 import cv2 import numpy as np img=cv2.imread(

随机推荐