Java排序算法总结之堆排序

本文实例讲述了Java排序算法总结之堆排序。分享给大家供大家参考。具体分析如下:

1991年计算机先驱奖获得者、斯坦福大学计算机科学系教授罗伯特·弗洛伊德(Robert W.Floyd)和威廉姆斯(J.Williams)在1964年共同发明了著名的堆排序算法( Heap Sort )。本文主要介绍堆排序用Java来实现。

堆积排序(Heapsort)是指利用堆积树(堆)这种资料结构所设计的一种排序算法,可以利用数组的特点快速定位指定索引的元素。堆排序是不稳定的排序方法,辅助空间为O(1), 最坏时间复杂度为O(nlog2n) ,堆排序的堆序的平均性能较接近于最坏性能。

堆排序利用了大根堆(或小根堆)堆顶记录的关键字最大(或最小)这一特征,使得在当前无序区中选取最大(或最小)关键字的记录变得简单。

(1)用大根堆排序的基本思想

① 先将初始文件R[1..n]建成一个大根堆,此堆为初始的无序区
② 再将关键字最大的记录R[1](即堆顶)和无序区的最后一个记录R[n]交换,由此得到新的无序区R[1..n-1]和有序区R[n],且满足R[1..n-1].keys≤R[n].key
③由于交换后新的根R[1]可能违反堆性质,故应将当前无序区R[1..n-1]调整为堆。然后再次将R[1..n-1]中关键字最大的记录R[1]和该区间的最后一个记录R[n-1]交换,由此得到新的无序区R[1..n-2]和有序区R[n-1..n],且仍满足关系R[1..n-2].keys≤R[n-1..n].keys,同样要将R[1..n-2]调整为堆。
……
直到无序区只有一个元素为止。
(2)大根堆排序算法的基本操作:
① 初始化操作:将R[1..n]构造为初始堆;
② 每一趟排序的基本操作:将当前无序区的堆顶记录R[1]和该区间的最后一个记录交换,然后将新的无序区调整为堆(亦称重建堆)。
注意:
①只需做n-1趟排序,选出较大的n-1个关键字即可以使得文件递增有序。
②用小根堆排序与利用大根堆类似,只不过其排序结果是递减有序的。堆排序和直接选择排序相反:在任何时刻堆排序中无序区总是在有序区之前,且有序区是在原向量的尾部由后往前逐步扩大至整个向量为止。

代码实现:

public class Test {
  public static int[] Heap = { 10, 32, 1, 9, 5, 7, 12, 0, 4, 3 };
  // 预设数据数组
  public static void main(String args[]) {
    int i; // 循环计数变量
    int Index = Heap.length; // 数据索引变量
    System.out.print("排序前: ");
    for (i = 1; i < Index - 1; i++)
      System.out.printf("%3s", Heap);
    System.out.println("");
    HeapSort(Index - 2); // 堆排序
    System.out.print("排序后: ");
    for (i = 1; i < Index - 1; i++)
      System.out.printf("%3s", Heap);
    System.out.println("");
  }
  /**
   * 建立堆
   */
  public static void CreateHeap(int Root, int Index){
    int i, j; // 循环计数变量
    int Temp; // 暂存变量
    int Finish; // 判断堆是否建立完成
    j = 2 * Root; // 子节点的Index
    Temp = Heap[Root]; // 暂存Heap的Root 值
    Finish = 0; // 预设堆建立尚未完成
    while (j <= Index && Finish == 0) {
      if (j < Index) // 找最大的子节点
        if (Heap[j] < Heap[j + 1])
          j++;
      if (Temp >= Heap[j])
        Finish = 1; // 堆建立完成
      else {
        Heap[j / 2] = Heap[j]; // 父节点 = 目前节点
        j = 2 * j;
      }
    }
    Heap[j / 2] = Temp; // 父节点 = Root值
  }
  public static void HeapSort(int Index) {
    int i, j, Temp;
    // 将二叉树转成Heap
    for (i = (Index / 2); i >= 1; i--)
      CreateHeap(i, Index);
    // 开始进行堆排序
    for (i = Index - 1; i >= 1; i--) {
      Temp = Heap; // Heap的Root值和最后一个值交换
      Heap = Heap[1];
      Heap[1] = Temp;
      CreateHeap(1, i); // 对其余数值重建堆
      System.out.print("排序中: ");
      for (j = 1; j <= Index; j++)
      System.out.printf("%3s",Heap[j]);
      System.out.println("");
    }
  }
}

堆可以被看成是一棵树,结点在堆中的高度可以被定义为从本结点到叶子结点的最长简单下降路径上边的数目;定义堆的高度为树根的高度。我们将看到,堆结构上的一些基本操作的运行时间至多是与树的高度成正比,为O(lgn)。通过阅读本文,希望能帮助到你。

希望本文所述对大家的java程序设计有所帮助。

(0)

相关推荐

  • Java各种排序算法汇总(冒泡,选择,归并,希尔及堆排序等)

    本文实例汇总了Java各种排序算法.分享给大家供大家参考,具体如下: 1. 冒泡排序: public class SortTest { public static void main(String[] args) { int[] a = {345,7,32,5,4,-1,3,12,23,110,45645,321,456,78,-1,78,78,32,444,345}; show(a); bubbleSort(a); show(a); } private static void bubbleSo

  • Java 归并排序算法、堆排序算法实例详解

    基本思想: 归并(Merge)排序法是将两个(或两个以上)有序表合并成一个新的有序表,即把待排序序列分为若干个子序列,每个子序列是有序的.然后再把有序子序列合并为整体有序序列. 归并排序示例: 合并方法: 设r[i-n]由两个有序子表r[i-m]和r[m+1-n]组成,两个子表长度分别为n-i +1.n-m. j=m+1:k=i:i=i; //置两个子表的起始下标及辅助数组的起始下标 若i>m 或j>n,转⑷ //其中一个子表已合并完,比较选取结束 //选取r[i]和r[j]较小的存入辅助数组

  • 详解堆排序算法原理及Java版的代码实现

    概述 堆排序是一种树形选择排序,是对直接选择排序的有效改进. 堆的定义如下:具有n个元素的序列(k1,k2,...,kn), 当且仅当满足: 时称之为堆.由堆的定义可以看出,堆顶元素(即第一个元素)必为最小项(小顶堆)或最大项(大顶堆). 若以一维数组存储一个堆,则堆对应一棵完全二叉树,且所有非叶结点(有子女的结点)的值均不大于(或不小于)其子女的值,根结点(堆顶元素)的值是最小(或最大)的. (a)大顶堆序列:(96, 83, 27, 38, 11, 09) (b)小顶堆序列:(12, 36,

  • Java实现堆排序(Heapsort)实例代码

    复制代码 代码如下: import java.util.Arrays; public class HeapSort { public static void heapSort(DataWraper[] data){        System.out.println("开始排序");        int arrayLength=data.length;        //循环建堆        for(int i=0;i<arrayLength-1;i++){         

  • 堆排序算法的讲解及Java版实现

    堆是数据结构中的一种重要结构,了解了"堆"的概念和操作,可以快速掌握堆排序. 堆的概念 堆是一种特殊的完全二叉树(complete binary tree).如果一棵完全二叉树的所有节点的值都不小于其子节点,称之为大根堆(或大顶堆):所有节点的值都不大于其子节点,称之为小根堆(或小顶堆). 在数组(在0号下标存储根节点)中,容易得到下面的式子(这两个式子很重要): 1.下标为i的节点,父节点坐标为(i-1)/2: 2.下标为i的节点,左子节点坐标为2*i+1,右子节点为2*i+2. 堆

  • java 数据结构之堆排序(HeapSort)详解及实例

    1 堆排序 堆是一种重要的数据结构,分为大根堆和小根堆,是完全二叉树, 底层如果用数组存储数据的话,假设某个元素为序号为i(Java数组从0开始,i为0到n-1),如果它有左子树,那么左子树的位置是2i+1,如果有右子树,右子树的位置是2i+2,如果有父节点,父节点的位置是(n-1)/2取整.最大堆的任意子树根节点不小于任意子结点,最小堆的根节点不大于任意子结点. 所谓堆排序就是利用堆这种数据结构的性质来对数组进行排序,在数组的非降序排序中,需要使用的就是大根堆,因为根据大根堆的性质可知,最大的

  • 深入解析堆排序的算法思想及Java代码的实现演示

    一.基础知识 我们通常所说的堆是指二叉堆,二叉堆又称完全二叉树或者叫近似完全二叉树.二叉堆又分为最大堆和最小堆. 堆排序(Heapsort)是指利用堆这种数据结构所设计的一种排序算法,它是选择排序的一种.可以利用数组的特点快速定位指定索引的元素.数组可以根据索引直接获取元素,时间复杂度为O(1),也就是常量,因此对于取值效率极高. 最大堆的特性如下: 父结点的键值总是大于或者等于任何一个子节点的键值 每个结点的左子树和右子树都是一个最大堆 最小堆的特性如下: 父结点的键值总是小于或者等于任何一个

  • JAVA算法起步之堆排序实例

    学习堆排序,首先需要明白堆的概念,堆是一个数组.可以近似当做完全二叉树的数组存储方式.但是跟他还有其他的性质,就是类似于二叉排序树.有最大堆跟最小堆之分,最大堆是指根节点的值都大于子节点的值,而最小堆的是根节点的值小于其子节点的值.堆排序一般用的是最大堆,而最小堆可以构造优先队列.堆里面有一个方法是用来维护堆的性质,也就是我们下面代码中的maxheap方法,这是维护最大堆性质的方法,第一个参数就是堆也就是数组,第二个参数是调整堆的具体节点位置,可能这个节点的值不符合最大堆的性质,那么这个值得位置

  • Java堆排序算法详解

    堆是数据结构中的一种重要结构,了解"堆"的概念和操作,可以帮助我们快速地掌握堆排序. 堆的概念 堆是一种特殊的完全二叉树(complete binary tree).如果一棵完全二叉树的所有节点的值都不小于其子节点,称之为大根堆(或大顶堆):所有节点的值都不大于其子节点,称之为小根堆(或小顶堆). 在数组(在0号下标存储根节点)中,容易得到下面的式子(这两个式子很重要): 1.下标为i的节点,父节点坐标为(i-1)/2: 2.下标为i的节点,左子节点坐标为2*i+1,右子节点为2*i+

  • java堆排序原理及算法实现

    从堆排序的简介到堆排序的算法实现等如下: 1. 简介 堆排序是建立在堆这种数据结构基础上的选择排序,是原址排序,时间复杂度O(nlogn),堆排序并不是一种稳定的排序方式.堆排序中通常使用的堆为最大堆. 2. 堆的定义 堆是一种数据结构,是一颗特殊的完全二叉树,通常分为最大堆和最小堆.最大堆的定义为根结点最大,且根结点左右子树都是最大堆:同样,最小堆的定义为根结点最小,且根结点左右子树均为最小堆. 最大堆满足其每一个父结点均大于其左右子结点,最小堆则满足其每一个父结点均小于其左右子结点. 3.

随机推荐