在Python中实现贪婪排名算法的教程

在较早的一遍文章中,我曾经提到过我已经写了一个属于自己的排序算法,并且认为需要通过一些代码来重新回顾一下这个排序算法。

对于我所完成的工作,我核实并且保证微处理器的安全。对非常复杂的CPU进行测试的一个方法就是创建该芯片的另一个模型,其可以用来产生在CPU上运行的伪随机指令流。这所谓的ISG(指令流产生器)能够在很短的时间内创建几千(甚至几百万)个这样的测试,通过某种方式,使其可以巧妙地给出一些对将在CPU上执行的指令流的控制或操纵。

现在对这些指令流进行模拟,可以通过每一个测试实例花费的时间获取到CPU的那一部分被使用了(这叫做被覆盖)的信息,并且ISG所产生的的过个测试可能会覆盖CPU的同一个区域。为了增加CPU的整体覆盖范围,我们启动一个被称作复原的行为——所有的测试都运行,并且它们的覆盖范围和花费的时间将被存储起来。在这次复原的最后,您可能会有几千个测试实例只覆盖了CPU的某一部分。

如果你拿着这个复原测试的记过,并且对其进行排序,你会发现这个测试结果的一个子集会给出它们覆盖了CPU的所有部分。通常,上千的伪随机测试可能会被排序,进而产生一个只有几百个测试的子列表,它们在运行时将会给出同样的覆盖范围。接下来我们经常会做的是,查看CPU的哪个部分没有被覆盖,然后通过ISG或其它方法在产生更多的测试,来试图填补这一空白。再然后会运行一次新的复原,并且循环得再一次进行排序来充分使用该CPU,以达到某个覆盖范围目标。

对测试进行排名是复原流程的一个重要部分,当其进行地很好时你可能就会忘记它。不幸的是,有时,当我想要对其它数据进行排名时,CAD工具厂商所提供的常用排名算法并不适合。因此,能够扩展到处理成百上千个测试和覆盖点才是一个排名算法的本质。
 
输入

通常情况下,我不得不从其他CAD程序产生的文本或HTML文件来解析我的输入 - 这是个是单调乏味的工作,我会跳过这个乏味的工作,而通过以Python字典的形式提供理想的输入。 (有时用于解析输入文件的代码可以跟排名算法一样大或着更大)。
让我们假设每个ISG测试都有一个名称,在确定的“时间”内运行,当模拟显示'覆盖'设计中的 一组编号的特性时。解析之后,所收集的输入数据由程序中的结果字典来表示。

results = {
#  'TEST': ( TIME, set([COVERED_POINT ...])),
 'test_00': ( 2.08, set([2, 3, 5, 11, 12, 16, 19, 23, 25, 26, 29, 36, 38, 40])),
 'test_01': ( 58.04, set([0, 10, 13, 15, 17, 19, 20, 22, 27, 30, 31, 33, 34])),
 'test_02': ( 34.82, set([3, 4, 6, 12, 15, 21, 23, 25, 26, 33, 34, 40])),
 'test_03': ( 32.74, set([4, 5, 10, 16, 21, 22, 26, 39])),
 'test_04': (100.00, set([0, 1, 4, 6, 7, 8, 9, 11, 12, 18, 26, 27, 31, 36])),
 'test_05': ( 4.46, set([1, 2, 6, 11, 14, 16, 17, 21, 22, 23, 30, 31])),
 'test_06': ( 69.57, set([10, 11, 15, 17, 19, 22, 26, 27, 30, 32, 38])),
 'test_07': ( 85.71, set([0, 2, 4, 5, 9, 10, 14, 17, 24, 34, 36, 39])),
 'test_08': ( 5.73, set([0, 3, 8, 9, 13, 19, 23, 25, 28, 36, 38])),
 'test_09': ( 15.55, set([7, 15, 17, 25, 26, 30, 31, 33, 36, 38, 39])),
 'test_10': ( 12.05, set([0, 4, 13, 14, 15, 24, 31, 35, 39])),
 'test_11': ( 52.23, set([0, 3, 6, 10, 11, 13, 23, 34, 40])),
 'test_12': ( 26.79, set([0, 1, 4, 5, 7, 8, 10, 12, 13, 31, 32, 40])),
 'test_13': ( 16.07, set([2, 6, 9, 11, 13, 15, 17, 18, 34])),
 'test_14': ( 40.62, set([1, 2, 8, 15, 16, 19, 22, 26, 29, 31, 33, 34, 38])),
 }<span style="font-size:10pt;line-height:1.5;font-family:'sans serif', tahoma, verdana, helvetica;"></span>

贪婪排名算法的核心是对当前选择测试的子集进行排序:

  • 至少用一个测试集覆盖尽可能大的范围。
  • 经过第一个步骤,逐步减少测试集,同时覆盖尽可能大的范围。
  • 给选择的测试做出一个排序,这样小数据集的测试也可以选择使用
  • 完成上述排序后,接下来就可以优化算法的执行时间了
  • 当然,他需要能在很大的测试集下工作。

贪婪排名算法的工作原理就是先选择当前测试集的某一项的最优解,然后寻找下一项的最优解,依次进行...

如果有两个以上的算法得出相同的执行结果,那么将以执行”时间“来比较两种算法优劣。

用下面的函数完成的算法:

def greedyranker(results):
  results = results.copy()
  ranked, coveredsofar, costsofar, round = [], set(), 0, 0
  noncontributing = []
  while results:
    round += 1
    # What each test can contribute to the pool of what is covered so far
    contributions = [(len(cover - coveredsofar), -cost, test)
             for test, (cost, cover) in sorted(results.items()) ]
    # Greedy ranking by taking the next greatest contributor
    delta_cover, benefit, test = max( contributions )
    if delta_cover > 0:
      ranked.append((test, delta_cover))
      cost, cover = results.pop(test)
      coveredsofar.update(cover)
      costsofar += cost
    for delta_cover, benefit, test in contributions:
      if delta_cover == 0:
        # this test cannot contribute anything
        noncontributing.append( (test, round) )
        results.pop(test)
  return coveredsofar, ranked, costsofar, noncontributing

每次while循环(第5行),下一个最好的测试会被追加到排名和测试,不会 丢弃贡献的任何额外覆盖(37-41行)

上面的函数是略显简单,所以我花了一点时间用tutor来标注,当运行时打印出它做的。
函数(有指导):
它完成同样的事情,但代码量更大,太繁冗:

def greedyranker(results, tutor=True):
  results = results.copy()
  ranked, coveredsofar, costsofar, round = [], set(), 0, 0
  noncontributing = []
  while results:
    round += 1
    # What each test can contribute to the pool of what is covered so far
    contributions = [(len(cover - coveredsofar), -cost, test)
             for test, (cost, cover) in sorted(results.items()) ]
    if tutor:
      print('\n## Round %i' % round)
      print(' Covered so far: %2i points: ' % len(coveredsofar))
      print(' Ranked so far: ' + repr([t for t, d in ranked]))
      print(' What the remaining tests can contribute, largest contributors first:')
      print('  # DELTA, BENEFIT, TEST')
      deltas = sorted(contributions, reverse=True)
      for delta_cover, benefit, test in deltas:
        print('   %2i,  %7.2f,  %s' % (delta_cover, benefit, test))
      if len(deltas)>=2 and deltas[0][0] == deltas[1][0]:
        print(' Note: This time around, more than one test gives the same')
        print('    maximum delta contribution of %i to the coverage so far'
            % deltas[0][0])
        if deltas[0][1] != deltas[1][1]:
          print('    we order based on the next field of minimum cost')
          print('    (equivalent to maximum negative cost).')
        else:
          print('    the next field of minimum cost is the same so')
          print('    we arbitrarily order by test name.')
      zeroes = [test for delta_cover, benefit, test in deltas
           if delta_cover == 0]
      if zeroes:
        print(' The following test(s) cannot contribute more to coverage')
        print(' and will be dropped:')
        print('  ' + ', '.join(zeroes))

    # Greedy ranking by taking the next greatest contributor
    delta_cover, benefit, test = max( contributions )
    if delta_cover > 0:
      ranked.append((test, delta_cover))
      cost, cover = results.pop(test)
      if tutor:
        print(' Ranking %s in round %2i giving extra coverage of: %r'
            % (test, round, sorted(cover - coveredsofar)))
      coveredsofar.update(cover)
      costsofar += cost

    for delta_cover, benefit, test in contributions:
      if delta_cover == 0:
        # this test cannot contribute anything
        noncontributing.append( (test, round) )
        results.pop(test)
  if tutor:
    print('\n## ALL TESTS NOW RANKED OR DISCARDED\n')
  return coveredsofar, ranked, costsofar, noncontributing

每一块以  if tutor开始:  添加以上代码

样值输出
调用排序并打印结果的代码是:

totalcoverage, ranking, totalcost, nonranked = greedyranker(results)
print('''
A total of %i points were covered,
using only %i of the initial %i tests,
and should take %g time units to run.

The tests in order of coverage added:

  TEST DELTA-COVERAGE'''
 % (len(totalcoverage), len(ranking), len(results), totalcost))
print('\n'.join(' %6s %i' % r for r in ranking))

结果包含大量东西,来自tutor并且最后跟着结果。

对这个伪随机生成15条测试数据的测试案例,看起来只需要七条去产生最大的总覆盖率。(而且如果你愿意放弃三条测试,其中每个只覆盖了一个额外的点,那么15条测试中的4条就将给出92.5%的最大可能覆盖率)。

(0)

相关推荐

  • python的正则表达式re模块的常用方法

    1.re的简介 使用python的re模块,尽管不能满足所有复杂的匹配情况,但足够在绝大多数情况下能够有效地实现对复杂字符串的分析并提取出相关信息.python 会将正则表达式转化为字节码,利用 C 语言的匹配引擎进行深度优先的匹配. 复制代码 代码如下: import re print re.__doc__ 可以查询re模块的功能信息,下面会结合几个例子说明. 2.re的正则表达式语法 正则表达式语法表如下: 语法 意义 说明 "." 任意字符 "^" 字符串开始

  • python中如何使用正则表达式的非贪婪模式示例

    前言 本文主要给大家介绍了关于python使用正则表达式的非贪婪模式的相关内容,分享出来供大家参考学习,下面话不多说了,来一起详细的介绍吧. 在正则表达式里,什么是正则表达式的贪婪与非贪婪匹配 如:String str="abcaxc"; Patter p="ab*c"; 贪婪匹配:正则表达式一般趋向于最大长度匹配,也就是所谓的贪婪匹配.如上面使用模式p匹配字符串str,结果就是匹配到:abcaxc(ab*c). 非贪婪匹配:就是匹配到结果就好,就少的匹配字符.如上

  • Python正则表达式教程之三:贪婪/非贪婪特性

    之前已经简单介绍了Python正则表达式的基础与捕获,那么在这一篇文章里,我将总结一下正则表达式的贪婪/非贪婪特性. 贪婪 默认情况下,正则表达式将进行贪婪匹配.所谓"贪婪",其实就是在多种长度的匹配字符串中,选择较长的那一个.例如,如下正则表达式本意是选出人物所说的话,但是却由于"贪婪"特性,出现了匹配不当: >>> sentence = """You said "why?" and I say

  • Python正则表达式非贪婪、多行匹配功能示例

    本文实例讲述了Python正则表达式非贪婪.多行匹配功能.分享给大家供大家参考,具体如下: 一些regular的tips: 1 非贪婪flag >>> re.findall(r"a(\d+?)","a23b") # 非贪婪模式 ['2'] >>> re.findall(r"a(\d+)","a23b") ['23'] 注意比较这种情况: >>> re.findall(r&q

  • Python入门篇之正则表达式

    正则表达式有两种基本的操作,分别是匹配和替换. 匹配就是在一个文本字符串中搜索匹配一特殊表达式: 替换就是在一个字符串中查找并替换匹配一特殊表达式的字符串.   1.基本元素   正则表达式定义了一系列的特殊字符元素以执行匹配动作. 正则表达式基本字符 字符 描述 text 匹配text字符串 . 匹配除换行符之外的任意一个单个字符 ^ 匹配一个字符串的开头 $ 匹配一个字符串的末尾 在正则表达式中,我们还可用匹配限定符来约束匹配的次数.   匹配限定符 最大匹配 最小匹配 描述 * * 重复匹

  • PYTHON正则表达式 re模块使用说明

    首先,运行 Python 解释器,导入 re 模块并编译一个 RE: #!python Python 2.2.2 (#1, Feb 10 2003, 12:57:01) >>> import re >>> p = re.compile('[a-z]+') >>> p <_sre.SRE_Pattern object at 80c3c28> 现在,你可以试着用 RE 的 [a-z]+ 去匹配不同的字符串.一个空字符串将根本不能匹配,因为 +

  • Python 中文正则表达式笔记

    从字符串的角度来说,中文不如英文整齐.规范,这是不可避免的现实.本文结合网上资料以及个人经验,以 python 语言为例,稍作总结.欢迎补充或挑错. 一点经验 可以使用 repr()函数查看字串的原始格式.这对于写正则表达式有所帮助. Python 的 re模块有两个相似的函数:re.match(), re.search .两个函数的匹配过程完全一致,只是起点不同.match只从字串的开始位置进行匹配,如果失败,它就此放弃:而search则会锲而不舍地完全遍历整个字串中所有可能的位置,直到成功地

  • 零基础写python爬虫之神器正则表达式

    接下来准备用糗百做一个爬虫的小例子. 但是在这之前,先详细的整理一下Python中的正则表达式的相关内容. 正则表达式在Python爬虫中的作用就像是老师点名时用的花名册一样,是必不可少的神兵利器. 一. 正则表达式基础 1.1.概念介绍 正则表达式是用于处理字符串的强大工具,它并不是Python的一部分. 其他编程语言中也有正则表达式的概念,区别只在于不同的编程语言实现支持的语法数量不同. 它拥有自己独特的语法以及一个独立的处理引擎,在提供了正则表达式的语言里,正则表达式的语法都是一样的. 下

  • Python 匹配任意字符(包括换行符)的正则表达式写法

    想使用正则表达式来获取一段文本中的任意字符,写出如下匹配规则: (.*) 结果运行之后才发现,无法获得换行之后的文本.于是查了一下手册,才发现正则表达式中,"."(点符号)匹配的是除了换行符"\n"以外的所有字符. 以下为正确的正则表达式匹配规则: ([\s\S]*) 同时,也可以用 "([\d\D]*)"."([\w\W]*)" 来表示. Web技术之家_www.waweb.cn 在文本文件里, 这个表达式可以匹配所有的英文

  • python正则表达式re模块详细介绍

    本模块提供了和Perl里的正则表达式类似的功能,不关是正则表达式本身还是被搜索的字符串,都可以是Unicode字符,这点不用担心,python会处理地和Ascii字符一样漂亮. 正则表达式使用反斜杆(\)来转义特殊字符,使其可以匹配字符本身,而不是指定其他特殊的含义.这可能会和python字面意义上的字符串转义相冲突,这也许有些令人费解.比如,要匹配一个反斜杆本身,你也许要用'\\\\'来做为正则表达式的字符串,因为正则表达式要是\\,而字符串里,每个反斜杆都要写成\\. 你也可以在字符串前加上

随机推荐