使用Python装饰器在Django框架下去除冗余代码的教程

Python装饰器是一个消除冗余的强大工具。随着将功能模块化为大小合适的方法,即使是最复杂的工作流,装饰器也能使它变成简洁的功能。

例如让我们看看Django web框架,该框架处理请求的方法接收一个方法对象,返回一个响应对象:

def handle_request(request):
  return HttpResponse("Hello, World")

我最近遇到一个案例,需要编写几个满足下述条件的api方法:

  • 返回json响应
  • 如果是GET请求,那么返回错误码

做为一个注册api端点例子,我将会像这样编写:

def register(request):
  result = None
  # check for post only
  if request.method != 'POST':
    result = {"error": "this method only accepts posts!"}
  else:
    try:
      user = User.objects.create_user(request.POST['username'],
                      request.POST['email'],
                      request.POST['password'])
      # optional fields
      for field in ['first_name', 'last_name']:
        if field in request.POST:
          setattr(user, field, request.POST[field])
      user.save()
      result = {"success": True}
    except KeyError as e:
      result = {"error": str(e) }
  response = HttpResponse(json.dumps(result))
  if "error" in result:
    response.status_code = 500
  return response

然而这样我将会在每个api方法中编写json响应和错误返回的代码。这将会导致大量的逻辑重复。所以让我们尝试用装饰器实现DRY原则吧。

装饰器简介

如果你不熟悉装饰器,我可以简单解释一下,实际上装饰器就是有效的函数包装器,python解释器加载函数的时候就会执行包装器,包装器可以修改函数的接收参数和返回值。举例来说,如果我想要总是返回比实际返回值大一的整数结果,我可以这样写装饰器:

# a decorator receives the method it's wrapping as a variable 'f'
def increment(f):
  # we use arbitrary args and keywords to
  # ensure we grab all the input arguments.
  def wrapped_f(*args, **kw):
    # note we call f against the variables passed into the wrapper,
    # and cast the result to an int and increment .
    return int(f(*args, **kw)) + 1
  return wrapped_f # the wrapped function gets returned.

现在我们就可以用@符号和这个装饰器去装饰另外一个函数了:

@increment
def plus(a, b):
  return a + b

result = plus(4, 6)
assert(result == 11, "We wrote our decorator wrong!")

装饰器修改了存在的函数,将装饰器返回的结果赋值给了变量。在这个例子中,'plus'的结果实际指向increment(plus)的结果。

对于非post请求返回错误

现在让我们在一些更有用的场景下应用装饰器。如果在django中接收的不是POST请求,我们用装饰器返回一个错误响应。

def post_only(f):
  """ Ensures a method is post only """
  def wrapped_f(request):
    if request.method != "POST":
      response = HttpResponse(json.dumps(
        {"error": "this method only accepts posts!"}))
      response.status_code = 500
      return response
    return f(request)
  return wrapped_f

现在我们可以在上述注册api中应用这个装饰器:

@post_only
def register(request):
  result = None
  try:
    user = User.objects.create_user(request.POST['username'],
                    request.POST['email'],
                    request.POST['password'])
    # optional fields
    for field in ['first_name', 'last_name']:
      if field in request.POST:
        setattr(user, field, request.POST[field])
    user.save()
    result = {"success": True}
  except KeyError as e:
    result = {"error": str(e) }
  response = HttpResponse(json.dumps(result))
  if "error" in result:
    response.status_code = 500
  return response

现在我们就有了一个可以在每个api方法中重用的装饰器。

发送json响应

为了发送json响应(同时处理500状态码),我们可以新建另外一个装饰器:

def json_response(f):
  """ Return the response as json, and return a 500 error code if an error exists """
  def wrapped(*args, **kwargs):
    result = f(*args, **kwargs)
    response = HttpResponse(json.dumps(result))
    if type(result) == dict and 'error' in result:
      response.status_code = 500
return response

现在我们就可以在原方法中去除json相关的代码,添加一个装饰器做为代替:

post_only
@json_response
def register(request):
  try:
    user = User.objects.create_user(request.POST['username'],
                    request.POST['email'],
                    request.POST['password'])
    # optional fields
    for field in ['first_name', 'last_name']:
      if field in request.POST:
        setattr(user, field, request.POST[field])
    user.save()
    return {"success": True}
  except KeyError as e:
    return {"error": str(e) }

现在,如果我需要编写新的方法,那么我就可以使用装饰器做冗余的工作。如果我要写登录方法,我只需要写真正相关的代码:

@post_only
@json_response
def login(request):
  if request.user is not None:
    return {"error": "User is already authenticated!"}
  user = auth.authenticate(request.POST['username'], request.POST['password'])
  if user is not None:
    if not user.is_active:
      return {"error": "User is inactive"}
    auth.login(request, user)
    return {"success": True, "id": user.pk}
  else:
    return {"error": "User does not exist with those credentials"}

BONUS: 参数化你的请求方法

我曾经使用过Tubogears框架,其中请求参数直接解释转递给方法这一点我很喜欢。所以要怎样在Django中模仿这一特性呢?嗯,装饰器就是一种解决方案!

例如:

def parameterize_request(types=("POST",)):
  """
  Parameterize the request instead of parsing the request directly.
  Only the types specified will be added to the query parameters.

  e.g. convert a=test&b=cv in request.POST to
  f(a=test, b=cv)
  """
  def wrapper(f):
    def wrapped(request):
      kw = {}
      if "GET" in types:
        for k, v in request.GET.items():
          kw[k] = v
      if "POST" in types:
        for k, v in request.POST.items():
          kw[k] = v
      return f(request, **kw)
    return wrapped
  return wrapper

注意这是一个参数化装饰器的例子。在这个例子中,函数的结果是实际的装饰器。

现在我就可以用参数化装饰器编写方法了!我甚至可以选择是否允许GET和POST,或者仅仅一种请求参数类型。

@post_only
@json_response
@parameterize_request(["POST"])
def register(request, username, email, password,
       first_name=None, last_name=None):
  user = User.objects.create_user(username, email, password)
  user.first_name=first_name
  user.last_name=last_name
  user.save()
  return {"success": True}

现在我们有了一个简洁的、易于理解的api。

BONUS #2: 使用functools.wraps保存docstrings和函数名

很不幸,使用装饰器的一个副作用是没有保存方法名(__name__)和docstring(__doc__)值:

def increment(f):
  """ Increment a function result """
  wrapped_f(a, b):
    return f(a, b) + 1
  return wrapped_f

@increment
def plus(a, b)
  """ Add two things together """
  return a + b

plus.__name__ # this is now 'wrapped_f' instead of 'plus'
plus.__doc__  # this now returns 'Increment a function result' instead of 'Add two things together'

这将对使用反射的应用造成麻烦,比如Sphinx,一个 自动生成文档的应用。

为了解决这个问题,我们可以使用'wraps'装饰器附加上名字和docstring:

from functools import wraps

def increment(f):
  """ Increment a function result """
  @wraps(f)
  wrapped_f(a, b):
    return f(a, b) + 1
  return wrapped_f

@increment
def plus(a, b)
  """ Add two things together """
  return a + b

plus.__name__ # this returns 'plus'
plus.__doc__  # this returns 'Add two things together'

BONUS #3: 使用'decorator'装饰器

如果仔细看看上述使用装饰器的方式,在包装器声明和返回的地方也有不少重复。

你可以安装python egg 'decorator',其中包含一个提供装饰器模板的'decorator'装饰器!

使用easy_install:

$ sudo easy_install decorator

或者Pip:

$ pip install decorator

然后你可以简单的编写:

from decorator import decorator

@decorator
def post_only(f, request):
  """ Ensures a method is post only """
  if request.method != "POST":
    response = HttpResponse(json.dumps(
      {"error": "this method only accepts posts!"}))
    response.status_code = 500
    return response
  return f(request)

这个装饰器更牛逼的一点是保存了__name__和__doc__的返回值,也就是它封装了 functools.wraps的功能!

(0)

相关推荐

  • python重试装饰器示例

    利用python 写一些网络服务的时候,当网络状况不好,或者资源占用过多,任务拥塞的情况下,总会抛出一些异常,当前任务就被终止了,可以很好的利用@装饰器,写一个重试的装饰器,这样比较python!执行结果: 复制代码 代码如下: WARNING:root:timed out, Retrying in 3 seconds...WARNING:root:timed out, Retrying in 6 seconds...WARNING:root:timed out, Retrying in 12

  • Python中的各种装饰器详解

    Python装饰器,分两部分,一是装饰器本身的定义,一是被装饰器对象的定义. 一.函数式装饰器:装饰器本身是一个函数. 1.装饰函数:被装饰对象是一个函数 [1]装饰器无参数: a.被装饰对象无参数: 复制代码 代码如下: >>> def test(func):     def _test():         print 'Call the function %s().'%func.func_name         return func()     return _test >

  • 详解Python中的装饰器、闭包和functools的教程

    装饰器(Decorators) 装饰器是这样一种设计模式:如果一个类希望添加其他类的一些功能,而不希望通过继承或是直接修改源代码实现,那么可以使用装饰器模式.简单来说Python中的装饰器就是指某些函数或其他可调用对象,以函数或类作为可选输入参数,然后返回函数或类的形式.通过这个在Python2.6版本中被新加入的特性可以用来实现装饰器设计模式. 顺便提一句,在继续阅读之前,如果你对Python中的闭包(Closure)概念不清楚,请查看本文结尾后的附录,如果没有闭包的相关概念,很难恰当的理解P

  • Python装饰器的函数式编程详解

    Python的装饰器的英文名叫Decorator,当你看到这个英文名的时候,你可能会把其跟Design Pattern里的Decorator搞混了,其实这是完全不同的两个东西.虽然好像,他们要干的事都很相似--都是想要对一个已有的模块做一些"修饰工作",所谓修饰工作就是想给现有的模块加上一些小装饰(一些小功能,这些小功能可能好多模块都会用到),但又不让这个小装饰(小功能)侵入到原有的模块中的代码里去.但是OO的Decorator简直就是一场恶梦,不信你就去看看wikipedia上的词条

  • python装饰器使用方法实例

    什么是python的装饰器? 网络上的定义:装饰器就是一函数,用来包装函数的函数,用来修饰原函数,将其重新赋值给原来的标识符,并永久的丧失原函数的引用. 最能说明装饰器的例子如下: 复制代码 代码如下: #-*- coding: UTF-8 -*-import time def foo():    print 'in foo()' # 定义一个计时器,传入一个,并返回另一个附加了计时功能的方法def timeit(func): # 定义一个内嵌的包装函数,给传入的函数加上计时功能的包装    d

  • python使用装饰器和线程限制函数执行时间的方法

    本文实例讲述了python使用装饰器和线程限制函数执行时间的方法.分享给大家供大家参考.具体分析如下: 很多时候函数内部包含了一些不可预知的事情,比如调用其它软件,从网络抓取信息,可能某个函数会卡在某个地方不动态,这段代码可以用来限制函数的执行时间,只需要在函数的上方添加一个装饰器,timelimited(2)就可以限定函数必须在2秒内执行完成,如果执行完成则返回函数正常的返回值,如果执行超时则会抛出错误信息. # -*- coding: utf-8 -*- from threading imp

  • 深入理解python中的闭包和装饰器

    python中的闭包从表现形式上定义(解释)为:如果在一个内部函数里,对在外部作用域(但不是在全局作用域)的变量进行引用,那么内部函数就被认为是闭包(closure). 以下说明主要针对 python2.7,其他版本可能存在差异. 也许直接看定义并不太能明白,下面我们先来看一下什么叫做内部函数: def wai_hanshu(canshu_1): def nei_hanshu(canshu_2): # 我在函数内部有定义了一个函数 return canshu_1*canshu_2 return

  • python 装饰器功能以及函数参数使用介绍

    简单的说:装饰器主要作用就是对函数进行一些修饰,它的出现是在引入类方法和静态方法的时候为了定义静态方法出现的.例如为了把foo()函数声明成一个静态函数 复制代码 代码如下: class Myclass(object): def staticfoo(): ............ ............ staticfoo = staticmethod(staticfoo) 可以用装饰器的方法实现: 复制代码 代码如下: class Myclass(object): @staticmethod

  • 深入浅出分析Python装饰器用法

    本文实例讲述了Python装饰器用法.分享给大家供大家参考,具体如下: 用类作为装饰器 示例一 最初代码: class bol(object): def __init__(self, func): self.func = func def __call__(self): return "<b>{}</b>".format(self.func()) class ita(object): def __init__(self, func): self.func = f

  • 巧用Python装饰器 免去调用父类构造函数的麻烦

    先看一段代码: 复制代码 代码如下: class T1(threading.Thread): def __init__(self, a, b, c): super(T1, self).__init__() self.a = a self.b = b self.c = c def run(self): print self.a, self.b, self.c 代码定义了一个继承自threading.Thread的class,看这句 super(T1, self).__init__() 也有些人喜欢

  • Python中的装饰器用法详解

    本文实例讲述了Python中的装饰器用法.分享给大家供大家参考.具体分析如下: 这里还是先由stackoverflow上面的一个问题引起吧,如果使用如下的代码: 复制代码 代码如下: @makebold @makeitalic def say():    return "Hello" 打印出如下的输出: <b><i>Hello<i></b> 你会怎么做?最后给出的答案是: 复制代码 代码如下: def makebold(fn):    

随机推荐