Java实现归并排序的示例代码

目录
  • 1.算法理解
  • 2.实现代码
  • 3.实现效果

1.算法理解

参考:图解Java中归并排序算法的原理与实现

2.实现代码

import java.lang.reflect.Array;
import java.util.*;

public class MergeSort{

    // 我们的算法类不允许产生任何实例
    private MergeSort(){}

    // 将arr[l...mid]和arr[mid+1...r]两部分进行归并
    private static void merge(Comparable[] arr, int l, int mid, int r) {

        Comparable[] aux = Arrays.copyOfRange(arr, l, r+1);

        // 初始化,i指向左半部分的起始索引位置l;j指向右半部分起始索引位置mid+1
        int i = l, j = mid+1;
        for( int k = l ; k <= r; k ++ ){

            if( i > mid ){  // 如果左半部分元素已经全部处理完毕
                arr[k] = aux[j-l]; j ++;
            }
            else if( j > r ){   // 如果右半部分元素已经全部处理完毕
                arr[k] = aux[i-l]; i ++;
            }
            else if( aux[i-l].compareTo(aux[j-l]) < 0 ){  // 左半部分所指元素 < 右半部分所指元素
                arr[k] = aux[i-l]; i ++;
            }
            else{  // 左半部分所指元素 >= 右半部分所指元素
                arr[k] = aux[j-l]; j ++;
            }
        }
    }

    // 递归使用归并排序,对arr[l...r]的范围进行排序
    private static void sort(Comparable[] arr, int l, int r, int depth) {

        System.out.print(repeatCharacters('-', depth*2));
        System.out.println("Deal with [ " + l + " , " + r + " ]");

        if (l >= r)
            return;

        int mid = (l+r)/2;
        sort(arr, l, mid, depth + 1);
        sort(arr, mid + 1, r, depth + 1);
        merge(arr, l, mid, r);
    }

    private static String repeatCharacters(char character, int length){
        StringBuilder s = new StringBuilder(length);
        for(int i = 0 ; i < length ; i ++)
            s.append(character);
        return s.toString();
    }

    public static void sort(Comparable[] arr){

        int n = arr.length;
        sort(arr, 0, n-1, 0);
    }

    // 测试MergeSort
    public static void main(String[] args) {

        // Merge Sort是我们学习的第一个O(nlogn)复杂度的算法
        // 可以在1秒之内轻松处理100万数量级的数据
        // 注意:不要轻易尝试使用SelectionSort, InsertionSort或者BubbleSort处理100万级的数据
        // 否则,你就见识了O(n^2)的算法和O(nlogn)算法的本质差异:)
//        int N = 1000000;
//        Integer[] arr = SortTestHelper.generateRandomArray(N, 0, 100000);
//        SortTestHelper.testSort("bobo.algo.MergeSort", arr);

        Integer[] arr = new Integer[8];
        for(int i = 0 ; i < 8 ; i ++)
        {
            arr[i] = new Integer(8-i);
//            arr[i] = 8 -i;
        }

//        arr = SortTestHelper.generateRandomArray(50, 1, 50);

        MergeSort.sort(arr);

        return;
    }
}
import java.lang.reflect.Method;
import java.lang.Class;
import java.util.Random;

public class SortTestHelper {

    // SortTestHelper不允许产生任何实例
    private SortTestHelper(){}

    // 生成有n个元素的随机数组,每个元素的随机范围为[rangeL, rangeR]
    public static Integer[] generateRandomArray(int n, int rangeL, int rangeR) {

        assert rangeL <= rangeR;

        Integer[] arr = new Integer[n];

        for (int i = 0; i < n; i++)
            arr[i] = new Integer((int)(Math.random() * (rangeR - rangeL + 1) + rangeL));
        return arr;
    }

    // 生成一个近乎有序的数组
    // 首先生成一个含有[0...n-1]的完全有序数组, 之后随机交换swapTimes对数据
    // swapTimes定义了数组的无序程度:
    // swapTimes == 0 时, 数组完全有序
    // swapTimes 越大, 数组越趋向于无序
    public static Integer[] generateNearlyOrderedArray(int n, int swapTimes){

        Integer[] arr = new Integer[n];
        for( int i = 0 ; i < n ; i ++ )
            arr[i] = new Integer(i);

        for( int i = 0 ; i < swapTimes ; i ++ ){
            int a = (int)(Math.random() * n);
            int b = (int)(Math.random() * n);
            int t = arr[a];
            arr[a] = arr[b];
            arr[b] = t;
        }

        return arr;
    }

    // 打印arr数组的所有内容
    public static void printArray(Object[] arr) {

        for (int i = 0; i < arr.length; i++){
            System.out.print( arr[i] );
            System.out.print( ' ' );
        }
        System.out.println();

        return;
    }

    // 判断arr数组是否有序
    public static boolean isSorted(Comparable[] arr){

        for( int i = 0 ; i < arr.length - 1 ; i ++ )
            if( arr[i].compareTo(arr[i+1]) > 0 )
                return false;
        return true;
    }

    // 测试sortClassName所对应的排序算法排序arr数组所得到结果的正确性和算法运行时间
    public static void testSort(String sortClassName, Comparable[] arr){

        // 通过Java的反射机制,通过排序的类名,运行排序函数
        try{
            // 通过sortClassName获得排序函数的Class对象
            Class sortClass = Class.forName(sortClassName);
            // 通过排序函数的Class对象获得排序方法
            Method sortMethod = sortClass.getMethod("sort",new Class[]{Comparable[].class});
            // 排序参数只有一个,是可比较数组arr
            Object[] params = new Object[]{arr};

            long startTime = System.currentTimeMillis();
            // 调用排序函数
            sortMethod.invoke(null,params);
            long endTime = System.currentTimeMillis();

            assert isSorted( arr );

            System.out.println( sortClass.getSimpleName()+ " : " + (endTime-startTime) + "ms" );
        }
        catch(Exception e){
            e.printStackTrace();
        }
    }
}

3.实现效果

以上就是Java实现归并排序的示例代码的详细内容,更多关于Java归并排序的资料请关注我们其它相关文章!

(0)

相关推荐

  • Java 详细讲解分治算法如何实现归并排序

    目录 1.什么是分治算法 分治法 基本思想 2.分治算法的体现--归并排序 归并排序 基本思想 3.代码实现 1.什么是分治算法 分治法 分治法,字面意思是"分而治之",就是把一个复杂的1问题分成两个或多个相同或相似的子问题,再把子问题分成更小的子问题直到最后子问题可以简单地直接求解,原问题的解即子问题的解的合并,这个思想是很多高效算法的基础,例如排序算法(快速排序,归并排序),傅里叶变换(快速傅里叶变换)等. 基本思想 分治法的基本思想:将一个难以直接解决的大问题,分割成一些规模较小

  • 图解Java排序算法之归并排序

    目录 基本思想 合并相邻有序子序列 代码实现 总结 基本思想 归并排序(MERGE-SORT)是利用归并的思想实现的排序方法,该算法采用经典的分治(divide-and-conquer)策略(分治法将问题分(divide)成一些小的问题然后递归求解,而治(conquer)的阶段则将分的阶段得到的各答案"修补"在一起,即分而治之). 分而治之 可以看到这种结构很像一棵完全二叉树,本文的归并排序我们采用递归去实现(也可采用迭代的方式去实现).分阶段可以理解为就是递归拆分子序列的过程,递归深

  • Java排序算法之归并排序简单实现

    算法描述:对于给定的一组记录,首先将每两个相邻的长度为1的子序列进行归并,得到 n/2(向上取整)个长度为2或1的有序子序列,再将其两两归并,反复执行此过程,直到得到一个有序序列. package sorting; /** * 归并排序 * 平均O(nlogn),最好O(nlogn),最坏O(nlogn);空间复杂度O(n);稳定;较复杂 * @author zeng * */ public class MergeSort { public static void merge(int[] a,

  • JAVA十大排序算法之归并排序详解

    目录 归并排序 怎么分 怎么治 代码实现 时间复杂度 算法稳定性 总结 归并排序 归并,指合并,合在一起.归并排序(Merge Sort)是建立在归并操作上的一种排序算法.其主要思想是分而治之.什么是分而治之?分而治之就是将一个复杂的计算,按照设定的阈值进行分解成多个计算,然后将各个计算结果进行汇总.即"分"就是把一个大的通过递归拆成若干个小的,"治"就是将分后的结果在合在一起. 若将两个有序集合并成一个有序表,称为2-路归并,与之对应的还有多路归并. 怎么分 对于

  • Java 十大排序算法之归并排序刨析

    目录 归并排序原理 归并排序API设计 归并排序代码实现 归并排序的时间复杂度分析 归并排序原理 1.尽可能的一组数据拆分成两个元素相等的子组,并对每一个子组继续拆分,直到拆分后的每个子组的元素个数是1为止. ⒉将相邻的两个子组进行合并成一个有序的大组. 3.不断的重复步骤2,直到最终只有一个组为止. 归并排序API设计 类名 Merge 构造方法 Merge():创建Merge对象 成员方法 1.public static void sort(Comparable[] a):对数组内的元素进行

  • java 排序算法之归并排序

    目录 简单介绍 基本思想 思路分析 代码实现 对代码的一些改进 大数据量耗时测试 复杂度 简单介绍 归并排序(merge sort)是利用 归并 的思想实现的排序方法,该算法采用经典的 分治(divide-and-conquer)策略 : 分(divide):将问题分成一些小的问题,然后递归求解 治(conquer):将分的阶段得到的各答案「修补」在一起 即:分而治之 该算法是采用分治法(Divide and Conquer)的一个非常典型的应用.将已有序的子序列合并,得到完全有序的序列:即先使

  • Java实现归并排序的示例代码

    目录 1.算法理解 2.实现代码 3.实现效果 1.算法理解 参考:图解Java中归并排序算法的原理与实现 2.实现代码 import java.lang.reflect.Array; import java.util.*; public class MergeSort{ // 我们的算法类不允许产生任何实例 private MergeSort(){} // 将arr[l...mid]和arr[mid+1...r]两部分进行归并 private static void merge(Compara

  • c++实现二路归并排序的示例代码

    二路归并排序 基本思想 二路归并排序就是将两个有序子表归并成一个有序表.首先我们得有一个算法用于归并:两个有序表放在同一数组的相邻位置上,arr[left]到arr[center-1]为第一个有序表,arr[center]到arr[right]是第二个有序表.每次从两端中取出一个进行比较,小的先放在一个temp数组,最后将比较剩下的直接放到temp中去,最后将temp又复制回arr.这是"治". 所谓"分",就是递归地将前半部分和后半部分的数据各自归并排序即可. 算

  • Java模拟UDP通信示例代码

    Java基础:模拟UDP通信 1.一次发送,一次接收 1.1.发送方 // 发送端,不需要连接服务器 public class UdpClientDemo {     public static void main(String[] args) throws Exception {         // 1. 发送数据包需要一个Socket         DatagramSocket socket = new DatagramSocket();         // 1.2 建立一个包    

  • java实现发送邮件的示例代码

    代码 import javax.mail.internet.InternetAddress; import javax.mail.internet.MimeMessage; import javax.mail.internet.MimeUtility; import javax.mail.Session; import javax.mail.MessagingException; import javax.mail.Transport; /** * @author BuNuo */ public

  • java生成图片验证码的示例代码

    给大家分享一款java生成验证码的源码,可设置随机字符串,去掉了几个容易混淆的字符,还可以设置验证码位数,比如4位,6位.当然也可以根据前台验证码的位置大小,设置验证码图片的大小.下边是源码分享,直接看吧,很简单! 创建servlet类 import java.io.IOException; import javax.servlet.Servlet; import javax.servlet.ServletException; import javax.servlet.http.HttpServ

  • java 格式化时间的示例代码

    package jkcs; import java.text.DateFormat; import java.text.SimpleDateFormat; import java.util.Date; import org.openqa.selenium.WebDriver; import org.openqa.selenium.firefox.FirefoxDriver; public class jdcs { public static void main(String[] args) th

  • Java实现黄金分割法的示例代码

    目录 1.概述 2.黄金分割法 3.修改后的黄金分割算法 4.编程实现修改后的黄金分割算法 1.概述 黄金分割法是一种区间收缩方法. 所谓区间收缩方法,指的是将含有最优解的区间逐步缩小,直至区间长度为零的方法.比如,为求函数f(x)在区间[a,b]上的最小值点,可在该区间中任取两点x1.x2,通过比较函数f(x)在这两点的函数值或者导数值等,来决定去掉一部分区间[a,x1​]或者[x2​,b],从而使搜索区间长度变小,如此迭代,直至区间收缩为一点为止,或区间长度小于某给定的精度为止. 对于区间[

  • Java实现二叉树的示例代码(递归&迭代)

    目录 1.二叉树基本概念见上节:详解Java中二叉树的基础概念(递归&迭代) 2.本次展示链式存储 以此图为例,完整代码如下: //基础二叉树实现 //使用左右孩子表示法 import java.util.*; import java.util.Deque; public class myBinTree { private static class TreeNode{ char val; TreeNode left; TreeNode right; public TreeNode(char va

  • Java实现warcraft java版游戏的示例代码

    目录 前言 主要需求 功能截图 代码实现 启动入口 ModelAttacker类 ModelUnit类 总结 前言 致敬经典的warcraft,<warcraft java版>是一款即时战略题材单机游戏,采用魔兽原味风格和机制.收集资源,建造防御工事,消灭所有敌军. 人类:洛丹伦人类联盟自兽人首次穿过黑暗之门时便告成立.他们坚韧不拔,勇敢无畏,身穿坚甲,手握利刃,英勇迎敌. 兽人:兽人是一个粗犷而坚韧的种族,他们身穿简单的皮毛和带有尖刺的皮甲,以肆意凶狠的战斗风格而闻名. 用java语言实现,

  • Java实现定时任务的示例代码

    目录 xxl-job官网 引入依赖 配置信息(application.properties) 配置类(XxlJobConfiguration) 调用xxl-job-admin模块的接口 添加调度任务 调度任务 xxl-job官网 https://www.xuxueli.com/xxl-job/ 调用xxl-job中的xxl-job-admin模块启用 引入依赖 <!-- 调度任务 --> <dependency> <groupId>com.xuxueli</gro

随机推荐