Python之列表推导式最全汇总(中篇)
目录
- 前言
- 列表推导式
- 语法规范:
- 初阶实例
- 1000~2021中包含7的数字有多少
- 求所有在100到1000之间的水仙花数
- 通常的解法,条件表达式比较麻,如果是10位数呢
- 把数字转成字符串,然后遍历计算立方和
- 一维与二维列表间的互转
- 实现二维列表的转置
- 行列互换,首行变首列,尾行变尾列,如下所示:
- 求列表嵌套的最大深度
- 求斜边长小于100的勾股数组
- 实现随机字符串(可作随机密码)
- 一个四层嵌套的推导式:求k等差数
- 附录
前言
网传的七天学Python的路线如下,我觉得可以在学过此表中前几天的内容后,就可以回头来学习一下
列表推导式:它综合了列表、for循环和条件语句。
第一天:基本概念(4小时) : print,变量,输入,条件语句。
第二天:基本概念(5小时) :列表,for循环,while循环,函数,导入模块。
第三天:简单编程问题(5小时) :交换两个变量值,将摄氏度转换为华氏温度,求数字中各位数之和, 判断某数是否为素数, 生成随机数,删除列表中的重复项等等。
第四天:中级编程问题(6小时) :反转-个字符串(回文检测),计算最大公约数,合并两个有序数组,猜数字游戏,计算年龄等等。
第五天:数据结构(6小时) :栈,队列,字典,元组,树,链表。
第六天:面向对象编程(OOP) (6小时) :对象,类,方法和构造函数,面向对象编程之继承。
第七天:算法(6小时) :搜索(线性和二分查找)、 排序(冒泡排序、 选择排序)、递归函数(阶乘、斐波那契数列)时间复杂度(线性、二次和常量)。
列表推导式
- list comprehension或译为列表解析式,是一种创建列表的简洁语法;
- 也可认为它是一个简版的for循环,但执行效率高于for循环。
- python 2.7+ 开始又引入了集合推导式、字典推导式,原理与列表推导式相近。
语法规范:
out_list = [out_express for out_express in input_list if out_express_condition]
其中,
- if 条件可有可无;
- for 循环可以嵌套多层,内外层循环的变量不可以同名;
- 推导式中也可以嵌套推导式,内外层推导式的变量互不影响,可以同名;
- 推导表达式out_express尽可能用内置函数,省得import或def function()。
初阶实例
1000~2021中包含7的数字有多少
>>> sum([1 for i in range(1000,2022) if '7' in str(i)]) 273 >>> [i for i in range(1000,2022) if '7' in str(i)] [1007, 1017, 1027, 1037, 1047, 1057, 1067, 1070, 1071, 1072, 1073, 1074, 1075, 1076, 1077, 1078, 1079, 1087, 1097, 1107, 1117, 1127, 1137, 1147, 1157, 1167, 1170, 1171, 1172, 1173, 1174, 1175, 1176, 1177, 1178, 1179, 1187, 1197, 1207, 1217, 1227, 1237, 1247, 1257, 1267, 1270, 1271, 1272, 1273, 1274, 1275, 1276, 1277, 1278, 1279, 1287, 1297, 1307, 1317, 1327, 1337, 1347, 1357, 1367, 1370, 1371, 1372, 1373, 1374, 1375, 1376, 1377, 1378, 1379, 1387, 1397, 1407, 1417, 1427, 1437, 1447, 1457, 1467, 1470, 1471, 1472, 1473, 1474, 1475, 1476, 1477, 1478, 1479, 1487, 1497, 1507, 1517, 1527, 1537, 1547, 1557, 1567, 1570, 1571, 1572, 1573, 1574, 1575, 1576, 1577, 1578, 1579, 1587, 1597, 1607, 1617, 1627, 1637, 1647, 1657, 1667, 1670, 1671, 1672, 1673, 1674, 1675, 1676, 1677, 1678, 1679, 1687, 1697, 1700, 1701, 1702, 1703, 1704, 1705, 1706, 1707, 1708, 1709, 1710, 1711, 1712, 1713, 1714, 1715, 1716, 1717, 1718, 1719, 1720, 1721, 1722, 1723, 1724, 1725, 1726, 1727, 1728, 1729, 1730, 1731, 1732, 1733, 1734, 1735, 1736, 1737, 1738, 1739, 1740, 1741, 1742, 1743, 1744, 1745, 1746, 1747, 1748, 1749, 1750, 1751, 1752, 1753, 1754, 1755, 1756, 1757, 1758, 1759, 1760, 1761, 1762, 1763, 1764, 1765, 1766, 1767, 1768, 1769, 1770, 1771, 1772, 1773, 1774, 1775, 1776, 1777, 1778, 1779, 1780, 1781, 1782, 1783, 1784, 1785, 1786, 1787, 1788, 1789, 1790, 1791, 1792, 1793, 1794, 1795, 1796, 1797, 1798, 1799, 1807, 1817, 1827, 1837, 1847, 1857, 1867, 1870, 1871, 1872, 1873, 1874, 1875, 1876, 1877, 1878, 1879, 1887, 1897, 1907, 1917, 1927, 1937, 1947, 1957, 1967, 1970, 1971, 1972, 1973, 1974, 1975, 1976, 1977, 1978, 1979, 1987, 1997, 2007, 2017] >>>
1000~2021中“包含7且能被7整除”的数字有多少
>>> sum([1 for i in range(1000,2022) if '7' in str(i) and i%7==0]) 39 >>> [i for i in range(1000,2022) if '7' in str(i) and i%7==0] [1057, 1071, 1078, 1127, 1176, 1197, 1267, 1274, 1337, 1372, 1379, 1407, 1470, 1477, 1547, 1575, 1617, 1673, 1687, 1701, 1708, 1715, 1722, 1729, 1736, 1743, 1750, 1757, 1764, 1771, 1778, 1785, 1792, 1799, 1827, 1876, 1897, 1967, 1974] >>>
小于1000000的所有正整数一共包含有多少个数字“7”
>>> num=lambda n:sum([str(i).count('7') for i in [i for i in range(1,n+1)] if '7' in str(i)]) >>> num(999999) 600000 >>> # if '7' in str(i) 可省掉,即0也合计结果一样
求所有在100到1000之间的水仙花数
水仙花数定义:指一个正整数的各位数字的立方和等于其本身。
通常的解法,条件表达式比较麻,如果是10位数呢
>>> for i in range(100,1000): if i==(i //100)**3 + (i//10%10)**3 + (i%10)**3: print(i, end=' ') 153 370 371 407 >>> >>> # 改写成列表推导式: >>> [i for i in range(100,1000) if i==(i //100)**3 + (i//10%10)**3 + (i%10)**3] [153, 370, 371, 407] >>>
把数字转成字符串,然后遍历计算立方和
>>> >>> for i in range(100,1000): k=0 for j in str(i): k+=int(j)**3 if k==i: print(i,end=' ') 153 370 371 407 >>> >>> # 转成列表推导式: >>> [n for i,n in enumerate([sum([int(i)**3 for i in str(j)]) for j in range(100,1000)]) if i+100==n] [153, 370, 371, 407] >>>
一维与二维列表间的互转
>>> *a,=range(1,10) >>> a [1, 2, 3, 4, 5, 6, 7, 8, 9] >>> b=[a[i:i+3] for i in range(0,len(a),3)] >>> b [[1, 2, 3], [4, 5, 6], [7, 8, 9]] >>> >>> c=[j for i in b for j in i] >>> c [1, 2, 3, 4, 5, 6, 7, 8, 9] >>> >>> sum(b,[]) [1, 2, 3, 4, 5, 6, 7, 8, 9] >>> # 很高级的方法 # pythonic
实现二维列表的转置
行列互换,首行变首列,尾行变尾列,如下所示:
''''''''''''''''''' [ [1, 2, 3], [4, 5, 6], [7, 8, 9] ] ↓↓↓ [ [1, 4, 7], [2, 5, 8], [3, 6, 9] ] 推导式如下: ''''''''''''''''''' >>> arr=[[1,2,3], [4,5,6], [7,8,9]] >>> [[arr[i][j] for i in range(len(arr))] for j in range(len(arr[0]))] [[1, 4, 7], [2, 5, 8], [3, 6, 9]] >>>
使用zip()函数:优点不用考虑数组的行数和列数,但直接结果是元组的列表,需转换下
>>> arr=[[1,2,3], [4,5,6], [7,8,9]] >>> list(zip(*arr)) [(1, 4, 7), (2, 5, 8), (3, 6, 9)] >>> >>> arr=[[1,2,3], [4,5,6], [7,8,9]] >>> arr=[list(i) for i in zip(*arr)] >>> arr [[1, 4, 7], [2, 5, 8], [3, 6, 9]] >>> arr=[list(i) for i in zip(*arr)] >>> arr [[1, 2, 3], [4, 5, 6], [7, 8, 9]] >>> # 换一个3行4列的: >>> arr=[[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]] >>> arr=[list(i) for i in zip(*arr)] >>> arr [[1, 5, 9], [2, 6, 10], [3, 7, 11], [4, 8, 12]] >>> arr=[list(i) for i in zip(*arr)] >>> arr [[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]] >>>
使用numpy库:特有numpy.array()可与list()相互转换
>>> import numpy as np >>> np.arange(1,10) array([1, 2, 3, 4, 5, 6, 7, 8, 9]) >>> # 或者: >>> np.array([*range(1,10)]) array([1, 2, 3, 4, 5, 6, 7, 8, 9]) >>> >>> list(np.arange(1,10)) [1, 2, 3, 4, 5, 6, 7, 8, 9] >>> >>> np.arange(1,10).reshape((3, 3)) array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) >>> arr=np.arange(1,10).reshape((3, 3)) >>> [list(i) for i in arr] [[1, 2, 3], [4, 5, 6], [7, 8, 9]] >>> >>> [j for i in arr for j in i] [1, 2, 3, 4, 5, 6, 7, 8, 9] >>> # 附:用numpy生成一个3行5列的随机数矩阵,数值范围[1,10): >>> [list(i) for i in __import__('numpy').random.randint(1,10,(3,5))] [[6, 3, 6, 7, 8], [4, 9, 5, 8, 7], [8, 4, 1, 2, 1]] >>>
求列表嵌套的最大深度
思路:遍历列表,只要还有一个元素是列表,就删除非列表元素然后进行降维;循环到所有元素都为非列表为止。
代码如下,自定义函数就用了两个推导式一个循环语句
>>> def func(L): if not isinstance(L,list): # or: if type(L) is not list: return 0 k=1 while any([isinstance(i,list) for i in L]): k+=1 L=[j for i in [i for i in L if isinstance(i,list)] for j in i] return k >>> l = [1, 2, [3, [4, [5, 6], [7, [8], [[9, 10], [11, [12, 13, 14], 15]]]]]] >>> func(l) 7 >>>
注:内置函数 isinstance(i,list) 判断一个对象i是否为某个指定类型,等价于type(i) is list。
例如: isinstance(123,int) 和 type(123) is int 都返回True。
求斜边长小于100的勾股数组
代码如下,其中 A 有直角边互换的重复,B用条件a<b约束,C把约束条件放进 range() 函数中。
>>> A=[(a,b,c) for a in range(1,100) for b in range(1,100) for c in range(1,100) if a**2+b**2==c**2] >>> B=[(a,b,c) for a in range(1,100) for b in range(1,100) for c in range(1,100) if a<b and a**2+b**2==c**2] >>> C=[(a,b,c) for a in range(1,100) for b in range(a,100) for c in range(1,100) if a**2+b**2==c**2] >>> A==B False >>> len(A)==len(B)*2 True >>> B==C True >>> C [(3, 4, 5), (5, 12, 13), (6, 8, 10), (7, 24, 25), (8, 15, 17), (9, 12, 15), (9, 40, 41), (10, 24, 26), (11, 60, 61), (12, 16, 20), (12, 35, 37), (13, 84, 85), (14, 48, 50), (15, 20, 25), (15, 36, 39), (16, 30, 34), (16, 63, 65), (18, 24, 30), (18, 80, 82), (20, 21, 29), (20, 48, 52), (21, 28, 35), (21, 72, 75), (24, 32, 40), (24, 45, 51), (24, 70, 74), (25, 60, 65), (27, 36, 45), (28, 45, 53), (30, 40, 50), (30, 72, 78), (32, 60, 68), (33, 44, 55), (33, 56, 65), (35, 84, 91), (36, 48, 60), (36, 77, 85), (39, 52, 65), (39, 80, 89), (40, 42, 58), (40, 75, 85), (42, 56, 70), (45, 60, 75), (48, 55, 73), (48, 64, 80), (51, 68, 85), (54, 72, 90), (57, 76, 95), (60, 63, 87), (65, 72, 97)]
实现随机字符串(可作随机密码)
>>> import string,random >>> [''.join(random.sample(string.printable[:-6],10)) for _ in range(30)] ['\\T[~(]J#"+', '):0~He7Dam', 'zw=?>7a(&^', 'v<c@W:!&VP', 'y\\~W6{u:P1', 'R)il~3p+;y', "PGQ_'{.k15", 'Z"^w=P&3{R', 'yMGR[g_65$', "4.)Q7$COd'", 'WTptgYS$Nj', 'Ra$4Lrvu2)', ',V$z.C8>L(', '/YwfR#ZuM@', '>~){Q7ayUo', 'Ol]54z|a;\\', 'Dp80fV,\\-@', '[kB{he98&r', "E]$'Q@R-`0", 'm{qMBRD.p2', '=.Is;r>%/x', 'o7zS{DQ~Tx', 'hH:E{s?#Gt', 'WB]`%\\f.FT', 'Mbxu&8YEN_', '5Et+3dGAf%', 'k5#o_]2Y?T', '$K3(yD7wvJ', '^5kJ*Nn:jz', '8,q7/Oyb*3'] >>> >>> [''.join(random.sample(string.ascii_letters+string.digits*5,10)) for _ in range(30)] ['ugON2AoS10', '3E62mQ2sP8', 'sL76c4Ppyj', 'hS967O15bX', '7n8580rq01', 'B75C178051', '8Mvc0g52wd', 'Zv08H3GED8', '158F1Kd36o', '914FM222TK', 'n5I5aqY66h', '91Tz8P5yMf', '22K9tPLoHn', 'gR5862BZj9', '319pO53389', 'z31R67r811', 'E1duG7mzPS', 't6kx344cCU', '3b66u5yOc3', '387s3bj031', 'J665322viO', 'N4Y76QmfO9', '9d4038O7fD', '2lQ8D41z3G', 'l03P7146G4', 'n716wj2b9c', '4av2g6dDb7', '6q65ro2z43', 'LJC77i56xq', 'hHBGA547a5'] >>>
不使用string库,只用字母、数字和下划线:
>>> pwd = lambda x=10:[''.join(__import__('random').sample((*map(chr,[*range(48,58),*range(65,91),*range(97,123)]),'_'),8)) for _ in range(x)] >>> >>> print(*pwd()) NVKfO5Du HxT2qSJF _GzK1kD3 KVw1OWjB Ob8fRswa MFqvpEWK fPDzuj8e ZndGFAs7 VHMp3FtX Hc7o642q >>> print(*pwd()) c2HEwvkn I9wH1Vjm yOCaqzNR pXMqRuDg nUfTKXuV Co5Ebq7g mBCkDco1 ieUzSTpu y1s8zVct OiK3GFTw >>> print(*pwd(5)) xTd69oJW Ob6pFsaq 4XW5lw_Y aHJxiZgr Z0VAGhNB >>> print(*pwd(8)) BP1bpzlv VBvnFQE5 kmFZSLid WyCpqvK_ vOyQlB4c VSY8q67y 8lkGBRbt _I4MfqJk
一个四层嵌套的推导式:求k等差数
“k等差数”定义:任意相邻两位之间的差的绝对值都为 k 的正十进制整数。
给定整数的位数 n 和 等差值 k,求所有 k等差数:
>>> iscdnum = lambda n,k:[num for num in range(10**(n-1),10**n) if all([i==k for i in [abs(int(j[0])-int(j[1])) for j in [str(num)[i:i+2] for i in range(len(str(num))-1)]]])] >>> iscdnum(2,5) [16, 27, 38, 49, 50, 61, 72, 83, 94] >>> iscdnum(3,2) [131, 135, 202, 242, 246, 313, 353, 357, 420, 424, 464, 468, 531, 535, 575, 579, 642, 646, 686, 753, 757, 797, 864, 868, 975, 979] >>> iscdnum(3,3) [141, 147, 252, 258, 303, 363, 369, 414, 474, 525, 585, 630, 636, 696, 741, 747, 852, 858, 963, 969] >>> iscdnum(3,4) [151, 159, 262, 373, 404, 484, 515, 595, 626, 737, 840, 848, 951, 959] >>> iscdnum(3,9) [909] >>> iscdnum(5,2) [13131, 13135, 13531, 13535, 13575, 13579, 20202, 20242, 20246, 24202, 24242, 24246, 24642, 24646, 24686, 31313, 31353, 31357, 35313, 35353, 35357, 35753, 35757, 35797, 42020, 42024, 42420, 42424, 42464, 42468, 46420, 46424, 46464, 46468, 46864, 46868, 53131, 53135, 53531, 53535, 53575, 53579, 57531, 57535, 57575, 57579, 57975, 57979, 64202, 64242, 64246, 64642, 64646, 64686, 68642, 68646, 68686, 75313, 75353, 75357, 75753, 75757, 75797, 79753, 79757, 79797, 86420, 86424, 86464, 86468, 86864, 86868, 97531, 97535, 97575, 97579, 97975, 97979] >>>
附录
到此这篇关于Python之列表推导式最全汇总(中篇)的文章就介绍到这了,其他两个部分的内容(上、下篇)请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!