SELECT * 效率低原理解析

目录
  • 效率低的原因
  • 索引知识延申
  • 联合索引的优势
    • 1) 减少开销
    • 2)覆盖索引
    • 3)效率高
    • 4)索引是建的越多越好吗

效率低的原因

无论在工作还是面试中,关于SQL中不要用“SELECT *”,都是大家听烂了的问题,虽说听烂了,但普遍理解还是在很浅的层面,并没有多少人去追根究底,探究其原理。

先看一下最新《阿里java开发手册(泰山版)》中 MySQL 部分描述:

【强制】在表查询中,一律不要使用 * 作为查询的字段列表,需要哪些字段必须明确写明。说明:

  • 增加查询分析器解析成本。
  • 增减字段容易与 resultMap 配置不一致。
  • 无用字段增加网络 消耗,尤其是 text 类型的字段。

开发手册中比较概括的提到了几点原因,让我们深入一些看看:

1. 不需要的列会增加数据传输时间和网络开销

  • 用“SELECT * ”数据库需要解析更多的对象、字段、权限、属性等相关内容,在 SQL 语句复杂,硬解析较多的情况下,会对数据库造成沉重的负担。
  • 增大网络开销;* 有时会误带上如log、IconMD5之类的无用且大文本字段,数据传输size会几何增涨。如果DB和应用程序不在同一台机器,这种开销非常明显
  • 即使 mysql 服务器和客户端是在同一台机器上,使用的协议还是 tcp,通信也是需要额外的时间。

2. 对于无用的大字段,如 varchar、blob、text,会增加 io 操作

准确来说,长度超过 728 字节的时候,会先把超出的数据序列化到另外一个地方,因此读取这条记录会增加一次 io 操作。(MySQL InnoDB)

3. 失去MySQL优化器“覆盖索引”策略优化的可能性

SELECT * 杜绝了覆盖索引的可能性,而基于MySQL优化器的“覆盖索引”策略又是速度极快,效率极高,业界极为推荐的查询优化方式。

例如,有一个表为t(a,b,c,d,e,f),其中,a为主键,b列有索引。

那么,在磁盘上有两棵 B+ 树,即聚集索引和辅助索引(包括单列索引、联合索引),分别保存(a,b,c,d,e,f)和(a,b),如果查询条件中where条件可以通过b列的索引过滤掉一部分记录,查询就会先走辅助索引,如果用户只需要a列和b列的数据,直接通过辅助索引就可以知道用户查询的数据。

如果用户使用select *,获取了不需要的数据,则首先通过辅助索引过滤数据,然后再通过聚集索引获取所有的列,这就多了一次b+树查询,速度必然会慢很多。

由于辅助索引的数据比聚集索引少很多,很多情况下,通过辅助索引进行覆盖索引(通过索引就能获取用户需要的所有列),都不需要读磁盘,直接从内存取,而聚集索引很可能数据在磁盘(外存)中(取决于buffer pool的大小和命中率),这种情况下,一个是内存读,一个是磁盘读,速度差异就很显著了,几乎是数量级的差异。

索引知识延申

上面提到了辅助索引,在MySQL中辅助索引包括单列索引、联合索引(多列联合),单列索引就不再赘述了,这里提一下联合索引的作用。

联合索引 (a,b,c)

联合索引 (a,b,c) 实际建立了 (a)、(a,b)、(a,b,c) 三个索引

我们可以将组合索引想成书的一级目录、二级目录、三级目录,如index(a,b,c),相当于a是一级目录,b是一级目录下的二级目录,c是二级目录下的三级目录。要使用某一目录,必须先使用其上级目录,一级目录除外。

联合索引的优势

1) 减少开销

建一个联合索引 (a,b,c) ,实际相当于建了 (a)、(a,b)、(a,b,c) 三个索引。每多一个索引,都会增加写操作的开销和磁盘空间的开销。对于大量数据的表,使用联合索引会大大的减少开销!

2)覆盖索引

对联合索引 (a,b,c),如果有如下 sql 的,

SELECT a,b,c from table where a='xx' and b = 'xx';

那么 MySQL 可以直接通过遍历索引取得数据,而无需回表,这减少了很多的随机 io 操作。减少 io 操作,特别是随机 io 其实是 DBA 主要的优化策略。所以,在真正的实际应用中,覆盖索引是主要的提升性能的优化手段之一。

3)效率高

索引列多,通过联合索引筛选出的数据越少。比如有 1000W 条数据的表,有如下SQL:

select col1,col2,col3 from table where col1=1 and col2=2 and col3=3;

假设:假设每个条件可以筛选出 10% 的数据。

  • A. 如果只有单列索引,那么通过该索引能筛选出 1000W 10%=100w 条数据,然后再回表从 100w 条数据中找到符合 col2=2 and col3= 3 的数据,然后再排序,再分页,以此类推(递归);
  • B. 如果是(col1,col2,col3)联合索引,通过三列索引筛选出 1000w 10% 10% *10%=1w,效率提升可想而知!

4)索引是建的越多越好吗

答案自然是否定的

  • 数据量小的表不需要建立索引,建立会增加额外的索引开销
  • 不经常引用的列不要建立索引,因为不常用,即使建立了索引也没有多大意义
  • 经常频繁更新的列不要建立索引,因为肯定会影响插入或更新的效率
  • 数据重复且分布平均的字段,因此他建立索引就没有太大的效果(例如性别字段,只有男女,不适合建立索引)
  • 数据变更需要维护索引,意味着索引越多维护成本越高。
  • 更多的索引也需要更多的存储空间

以上就是SELECT * 效率低原理解析的详细内容,更多关于SELECT * 效率低原理的资料请关注我们其它相关文章!

(0)

相关推荐

  • Mybatis之Select Count(*)的获取返回int的值操作

    本文将介绍,SSM中mybatis 框架如何获取Select Count(*)返回int 的值. 1. Service 代码: public boolean queryByunitclass(String unitclass, String unitsubclass) throws Exception { int count = matceMachineUnitMapper.queryByunitclass(unitclass, unitsubclass); if (count > 0) { r

  • MySQL select count(*)计数很慢优化方案

    目录 前言 1. MyISAM存储引擎计数为什么这么快? 2. 能不能手动实现统计总行数 3. InnoDB引擎能否实现快速计数 4. 四种计数方式的性能差别 前言 在日常开发工作中,我经常会遇到需要统计总数的场景,比如:统计订单总数.统计用户总数等.一般我们会使用MySQL 的count函数进行统计,但是随着数据量逐渐增大,统计耗时也越来越长,最后竟然出现慢查询的情况,这究竟是什么原因呢?本篇文章带你一下学习一下. 1. MyISAM存储引擎计数为什么这么快? 我们总有个错觉,就是感觉MyIS

  • 为什么MySQL不建议使用SELECT *

    目录 1. 不必要的磁盘I/O 2. 加重网络时延 3. 无法使用覆盖索引 4. 可能拖慢JOIN连接查询 “不要使用SELECT *”几乎已经成为了MySQL使用的一条金科玉律,就连<阿里Java开发手册>也明确表示不得使用*作为查询的字段列表,更是让这条规则拥有了权威的加持. 不过我在开发过程中直接使用SELECT *还是比较多的,原因有两个: 因为简单,开发效率非常高,而且如果后期频繁添加或修改字段,SQL语句也不需要改变: 我认为过早优化是个不好的习惯,除非在一开始就能确定你最终实际需

  • Mybatis Select Count(*)的返回值类型介绍

    目录 Select Count(*)的返回值类型 返回Count(*)的整数值 Select Count(*)的返回值类型 <select id="queryAlarmStatisticalAnalysis4System" parameterType="AlarmMailSendLog" resultType="java.lang.Integer"> select count(*) from mon_alarm_mail_send_l

  • SELECT * 效率低原理解析

    目录 效率低的原因 索引知识延申 联合索引的优势 1) 减少开销 2)覆盖索引 3)效率高 4)索引是建的越多越好吗 效率低的原因 无论在工作还是面试中,关于SQL中不要用“SELECT *”,都是大家听烂了的问题,虽说听烂了,但普遍理解还是在很浅的层面,并没有多少人去追根究底,探究其原理. 先看一下最新<阿里java开发手册(泰山版)>中 MySQL 部分描述: [强制]在表查询中,一律不要使用 * 作为查询的字段列表,需要哪些字段必须明确写明.说明: 增加查询分析器解析成本. 增减字段容易

  • 查询mysql中执行效率低的sql语句的方法

    一些小技巧1. 如何查出效率低的语句?在MySQL下,在启动参数中设置 --log-slow-queries=[文件名],就可以在指定的日志文件中记录执行时间超过long_query_time(缺省为10秒)的SQL语句.你也可以在启动配置文件中修改long query的时间,如: 复制代码 代码如下: # Set long query time to 8 seconds    long_query_time=8 2. 如何查询某表的索引?可使用SHOW INDEX语句,如: 复制代码 代码如下

  • 使用Python检测文章抄袭及去重算法原理解析

    在互联网出现之前,"抄"很不方便,一是"源"少,而是发布渠道少:而在互联网出现之后,"抄"变得很简单,铺天盖地的"源"源源不断,发布渠道也数不胜数,博客论坛甚至是自建网站,而爬虫还可以让"抄"完全自动化不费劲.这就导致了互联网上的"文章"重复性很高.这里的"文章"只新闻.博客等文字占据绝大部分内容的网页. 中文新闻网站的"转载"(其实就是抄)现象非

  • 微信小程序wxml列表渲染原理解析

    这篇文章主要介绍了微信小程序wxml列表渲染原理解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 列表渲染存在的意义 以电商为例,我们希望渲染5个商品,而又希望容易改变,我们就要在wxml中动态添加. <view> <block wx:for="{{products}}" wx:for-item="item" wx:key="index"> <view>{{

  • python实现布隆过滤器及原理解析

    在学习redis过程中提到一个缓存击穿的问题, 书中参考的解决方案之一是使用布隆过滤器, 那么就有必要来了解一下什么是布隆过滤器.在参考了许多博客之后, 写个总结记录一下. 一.布隆过滤器简介 什么是布隆过滤器? 本质上布隆过滤器( BloomFilter )是一种数据结构,比较巧妙的概率型数据结构(probabilistic data structure),特点是高效地插入和查询,可以用来告诉你 "某样东西一定不存在或者可能存在". 相比于传统的 Set.Map 等数据结构,它更高效

  • 从云数据迁移服务看MySQL大表抽取模式的原理解析

    摘要:MySQL JDBC抽取到底应该采用什么样的方式,且听小编给你娓娓道来. 小编最近在云上的一个迁移项目中被MySQL抽取模式折磨的很惨.一开始爆内存被客户怼,再后来迁移效率低下再被怼.MySQL JDBC抽取到底应该采用什么样的方式,且听小编给你娓娓道来. 1.1 Java-JDBC通信原理 JDBC与数据库之间的通信是通过socket完,大致流程如下图所示.Mysql Server ->内核Socket Buffer -> 客户端Socket Buffer ->JDBC所在的JV

  • MySQL 视图(View)原理解析

    MySQL 5.0以后引入了视图.视图实际是一个自身不存储数据的虚拟数据表.实际这个虚拟表的数据来自于访问视图的 SQL 查询的结果.MySQL 处理视图和处理数据表差不多,通过这种方式来满足很多需求.视图和数据表在 MySQL 中共享命名空间,然而 ,MySQL 处理而二者的方式并不相同,例如,视图没有触发器,并且无法使用 DROP TABLE 移除视图. 下面以 world 样例数据库为例来展示视图的工作机制. CREATE VIEW Oceania AS SELECT * FROM Cou

  • Apache Kafka 分区重分配的实现原理解析

    目录 一.前言 二.工具的使用 三.元数据管理及协调器 3.1 ZooKeeper 3.2 Kafka Controller 四.分区重分配流程分析 4.1 kafka-reassign-partitions 客户端 4.2 controller 维护分区的元数据信息 4.3 broker 端数据跨路径迁移 五.总结 本文作者为中国移动云能力中心大数据团队软件开发工程师孙大鹏,本文结合 2.0.0 版本的 Kafka 源码,详细介绍了 Kafka 分区副本重分配的流程和逻辑,供大家参考. 一.前

  • React setState是异步还是同步原理解析

    目录 setState异步更新 那么为什么setState设计为异步呢? 如何获取异步的结果 setState一定是异步的吗? setState异步更新 开发中当组件中的状态发生了变化,页面并不会重新渲染.我们必须要通过setState来告知React数据已经发生了变化,重新渲染页面. 先来看下面的例子: constructor() { super(); this.state = { message: "Hello World", }; } changeText() { this.se

  • Java 并发编程:volatile的使用及其原理解析

    Java并发编程系列[未完]: •Java 并发编程:核心理论 •Java并发编程:Synchronized及其实现原理 •Java并发编程:Synchronized底层优化(轻量级锁.偏向锁) •Java 并发编程:线程间的协作(wait/notify/sleep/yield/join) •Java 并发编程:volatile的使用及其原理 一.volatile的作用 在<Java并发编程:核心理论>一文中,我们已经提到过可见性.有序性及原子性问题,通常情况下我们可以通过Synchroniz

随机推荐