基于Opencv制作的美颜相机带你领略美颜特效的效果

目录
  • 导语
  • 正文
  • 总结

导语

​现在每一次出门,女友就喜欢拍照!BUT 嫌弃我给拍的照片角度不对,采光不好.......

总之一大堆理由,啥时候让我拍照的水平能有美颜相机三分之一的效果就好!​

果然都是锻炼出来的,至少现在我能看出来朋友圈哪些小姐姐批没批过照片。​

​​

​逃不掉​

​逃不掉啊,为了摆脱这种局面——

立马给女友写了一款简易版本的美颜相机给她偷偷的用!这样子就不担心被锤了。机智如我.jpg

正文

环境安装:

dlib库的安装 本博客提供三种方法进行安装  

T1方法:pip install dlib 此方法是需要在你安装cmake、Boost环境的计算机使用 。
T2方法:conda install -c menpo dlib=18.18此方法适合那些已经安装好conda库的环境的计算机使用。
T3方法:pip install dlib-19.8.1-cp36-cp36m-win_amd64.whl dlib库的whl文件——dlib-19.7.0-cp36-cp36m-win_amd64.rar dlib-19.3.1-cp35-cp35m-win_amd64.whl
​cv2库安装方法:

 pip install opencv-python

人脸五官,坐标、进行高斯模糊处理等等。

# 五官
class Organ():
	def __init__(self, img, img_hsv, temp_img, temp_hsv, landmarks, name, ksize=None):
		self.img = img
		self.img_hsv = img_hsv
		self.landmarks = landmarks
		self.name = name
		self.get_rect()
		self.shape = (int(self.bottom-self.top), int(self.right-self.left))
		self.size = self.shape[0] * self.shape[1] * 3
		self.move = int(np.sqrt(self.size/3)/20)
		self.ksize = self.get_ksize()
		self.patch_img, self.patch_hsv = self.get_patch(self.img), self.get_patch(self.img_hsv)
		self.set_temp(temp_img, temp_hsv)
		self.patch_mask = self.get_mask_relative()
	# 获取定位方框
	def get_rect(self):
		y, x = self.landmarks[:, 1], self.landmarks[:, 0]
		self.top, self.bottom, self.left, self.right = np.min(y), np.max(y), np.min(x), np.max(x)
	# 获得ksize,高斯模糊处理的参数
	def get_ksize(self, rate=15):
		size = max([int(np.sqrt(self.size/3)/rate), 1])
		size = (size if size%2==1 else size+1)
		return(size, size)
	# 截取局部切片
	def get_patch(self, img):
		shape = img.shape
		return img[np.max([self.top-self.move, 0]): np.min([self.bottom+self.move, shape[0]]), np.max([self.left-self.move, 0]): np.min([self.right+self.move, shape[1]])]
	def set_temp(self, temp_img, temp_hsv):
		self.img_temp, self.hsv_temp = temp_img, temp_hsv
		self.patch_img_temp, self.patch_hsv_temp = self.get_patch(self.img_temp), self.get_patch(self.hsv_temp)
	# 确认
	def confirm(self):
		self.img[:], self.img_hsv[:] = self.img_temp[:], self.hsv_temp[:]
	# 更新
	def update_temp(self):
		self.img_temp[:], self.hsv_temp[:] = self.img[:], self.img_hsv[:]
	# 勾画凸多边形
	def _draw_convex_hull(self, img, points, color):
		points = cv2.convexHull(points)
		cv2.fillConvexPoly(img, points, color=color)
	# 获得局部相对坐标遮盖
	def get_mask_relative(self, ksize=None):
		if ksize == None:
			ksize = self.ksize
		landmarks_re = self.landmarks.copy()
		landmarks_re[:, 1] -= np.max([self.top-self.move, 0])
		landmarks_re[:, 0] -= np.max([self.left-self.move, 0])
		mask = np.zeros(self.patch_img.shape[:2], dtype=np.float64)
		self._draw_convex_hull(mask, landmarks_re, color=1)
		mask = np.array([mask, mask, mask]).transpose((1, 2, 0))
		mask = (cv2.GaussianBlur(mask, ksize, 0) > 0) * 1.0
		return cv2.GaussianBlur(mask, ksize, 0)[:]
	# 获得全局绝对坐标遮盖
	def get_mask_abs(self, ksize=None):
		if ksize == None:
			ksize = self.ksize
		mask = np.zeros(self.img.shape, dtype=np.float64)
		patch = self.get_patch(mask)
		patch[:] = self.patch_mask[:]
		return mask

主要美颜效果进行的处理如下:

# 美白
	def whitening(self, rate=0.15, confirm=True):
		if confirm:
			self.confirm()
			self.patch_hsv[:, :, -1] = np.minimum(self.patch_hsv[:, :, -1]+self.patch_hsv[:, :, -1]*self.patch_mask[:, :, -1]*rate, 255).astype('uint8')
			self.img[:]=cv2.cvtColor(self.img_hsv, cv2.COLOR_HSV2BGR)[:]
			self.update_temp()
		else:
			self.patch_hsv_temp[:] = cv2.cvtColor(self.patch_img_temp, cv2.COLOR_BGR2HSV)[:]
			self.patch_hsv_temp[:, :, -1] = np.minimum(self.patch_hsv_temp[:, :, -1]+self.patch_hsv_temp[:, :, -1]*self.patch_mask[:, :, -1]*rate, 255).astype('uint8')
			self.patch_img_temp[:] = cv2.cvtColor(self.patch_hsv_temp, cv2.COLOR_HSV2BGR)[:]
	# 提升鲜艳度
	def brightening(self, rate=0.3, confirm=True):
		patch_mask = self.get_mask_relative((1, 1))
		if confirm:
			self.confirm()
			patch_new = self.patch_hsv[:, :, 1]*patch_mask[:, :, 1]*rate
			patch_new = cv2.GaussianBlur(patch_new, (3, 3), 0)
			self.patch_hsv[:, :, 1] = np.minimum(self.patch_hsv[:, :, 1]+patch_new, 255).astype('uint8')
			self.img[:]=cv2.cvtColor(self.img_hsv, cv2.COLOR_HSV2BGR)[:]
			self.update_temp()
		else:
			self.patch_hsv_temp[:] = cv2.cvtColor(self.patch_img_temp, cv2.COLOR_BGR2HSV)[:]
			patch_new = self.patch_hsv_temp[:, :, 1]*patch_mask[:, :, 1]*rate
			patch_new = cv2.GaussianBlur(patch_new, (3, 3), 0)
			self.patch_hsv_temp[:, :, 1] = np.minimum(self.patch_hsv[:, :, 1]+patch_new, 255).astype('uint8')
			self.patch_img_temp[:] = cv2.cvtColor(self.patch_hsv_temp, cv2.COLOR_HSV2BGR)[:]
	# 磨平
	def smooth(self, rate=0.6, ksize=None, confirm=True):
		if ksize == None:
			ksize=self.get_ksize(80)
		index = self.patch_mask > 0
		if confirm:
			self.confirm()
			patch_new = cv2.GaussianBlur(cv2.bilateralFilter(self.patch_img, 3, *ksize), ksize, 0)
			self.patch_img[index] = np.minimum(rate*patch_new[index]+(1-rate)*self.patch_img[index], 255).astype('uint8')
			self.img_hsv[:] = cv2.cvtColor(self.img, cv2.COLOR_BGR2HSV)[:]
			self.update_temp()
		else:
			patch_new = cv2.GaussianBlur(cv2.bilateralFilter(self.patch_img_temp, 3, *ksize), ksize, 0)
			self.patch_img_temp[index] = np.minimum(rate*patch_new[index]+(1-rate)*self.patch_img_temp[index], 255).astype('uint8')
			self.patch_hsv_temp[:] = cv2.cvtColor(self.patch_img_temp, cv2.COLOR_BGR2HSV)[:]
	# 锐化
	def sharpen(self, rate=0.3, confirm=True):
		patch_mask = self.get_mask_relative((3, 3))
		kernel = np.zeros((9, 9), np.float32)
		kernel[4, 4] = 2.0
		boxFilter = np.ones((9, 9), np.float32) / 81.0
		kernel = kernel - boxFilter
		index = patch_mask > 0
		if confirm:
			self.confirm()
			sharp = cv2.filter2D(self.patch_img, -1, kernel)
			self.patch_img[index] = np.minimum(((1-rate)*self.patch_img)[index]+sharp[index]*rate, 255).astype('uint8')
			self.update_temp()
		else:
			sharp = cv2.filter2D(self.patch_img_temp, -1, kernel)
			self.patch_img_temp[:] = np.minimum(self.patch_img_temp+self.patch_mask*sharp*rate, 255).astype('uint8')
			self.patch_hsv_temp[:] = cv2.cvtColor(self.patch_img_temp, cv2.COLOR_BGR2HSV)[:]

# 额头
class ForeHead(Organ):
	def __init__(self, img, img_hsv, temp_img, temp_hsv, landmarks, mask_organs, name, ksize=None):
		self.mask_organs = mask_organs
		super(ForeHead, self).__init__(img, img_hsv, temp_img, temp_hsv, landmarks, name, ksize)
	# 获得局部相对坐标mask
	def get_mask_relative(self, ksize=None):
		if ksize == None:
			ksize = self.ksize
		landmarks_re = self.landmarks.copy()
		landmarks_re[:, 1] -= np.max([self.top-self.move, 0])
		landmarks_re[:, 0] -= np.max([self.left-self.move, 0])
		mask = np.zeros(self.patch_img.shape[:2], dtype=np.float64)
		self._draw_convex_hull(mask, landmarks_re, color=1)
		mask = np.array([mask, mask, mask]).transpose((1, 2, 0))
		mask = (cv2.GaussianBlur(mask, ksize, 0) > 0) * 1.0
		patch_organs = self.get_patch(self.mask_organs)
		mask= cv2.GaussianBlur(mask, ksize, 0)[:]
		mask[patch_organs>0] = (1-patch_organs[patch_organs>0])
		return mask

# 脸类
class Face(Organ):
	def __init__(self, img, img_hsv, temp_img, temp_hsv, landmarks, index):
		self.index = index
		# 五官:下巴、嘴、鼻子、左右眼、左右耳
		self.organs_name = ['jaw', 'mouth', 'nose', 'left_eye', 'right_eye', 'left_brow', 'right_brow']
		# 五官标记点
		self.organs_point = [list(range(0, 17)), list(range(48, 61)),
							 list(range(27, 35)), list(range(42, 48)),
							 list(range(36, 42)), list(range(22, 27)),
							 list(range(17, 22))]
		self.organs = {name: Organ(img, img_hsv, temp_img, temp_hsv, landmarks[points], name) for name, points in zip(self.organs_name, self.organs_point)}
		# 额头
		mask_nose = self.organs['nose'].get_mask_abs()
		mask_organs = (self.organs['mouth'].get_mask_abs()+mask_nose+self.organs['left_eye'].get_mask_abs()+self.organs['right_eye'].get_mask_abs()+self.organs['left_brow'].get_mask_abs()+self.organs['right_brow'].get_mask_abs())
		forehead_landmark = self.get_forehead_landmark(img, landmarks, mask_organs, mask_nose)
		self.organs['forehead'] = ForeHead(img, img_hsv, temp_img, temp_hsv, forehead_landmark, mask_organs, 'forehead')
		mask_organs += self.organs['forehead'].get_mask_abs()
		# 人脸的完整标记点
		self.FACE_POINTS = np.concatenate([landmarks, forehead_landmark])
		super(Face, self).__init__(img, img_hsv, temp_img, temp_hsv, self.FACE_POINTS, 'face')
		mask_face = self.get_mask_abs() - mask_organs
		self.patch_mask = self.get_patch(mask_face)
	# 计算额头坐标
	def get_forehead_landmark(self, img, face_landmark, mask_organs, mask_nose):
		radius = (np.linalg.norm(face_landmark[0]-face_landmark[16])/2).astype('int32')
		center_abs = tuple(((face_landmark[0]+face_landmark[16])/2).astype('int32'))
		angle = np.degrees(np.arctan((lambda l:l[1]/l[0])(face_landmark[16]-face_landmark[0]))).astype('int32')
		mask = np.zeros(mask_organs.shape[:2], dtype=np.float64)
		cv2.ellipse(mask, center_abs, (radius, radius), angle, 180, 360, 1, -1)
		# 剔除与五官重合部分
		mask[mask_organs[:, :, 0]>0]=0
		# 根据鼻子的肤色判断真正的额头面积
		index_bool = []
		for ch in range(3):
			mean, std = np.mean(img[:, :, ch][mask_nose[:, :, ch]>0]), np.std(img[:, :, ch][mask_nose[:, :, ch]>0])
			up, down = mean+0.5*std, mean-0.5*std
			index_bool.append((img[:, :, ch]<down)|(img[:, :, ch]>up))
		index_zero = ((mask>0)&index_bool[0]&index_bool[1]&index_bool[2])
		mask[index_zero] = 0
		index_abs = np.array(np.where(mask>0)[::-1]).transpose()
		landmark = cv2.convexHull(index_abs).squeeze()
		return landmark

# 化妆器
class Makeup():
	def __init__(self, predictor_path='./predictor/shape_predictor_68_face_landmarks.dat'):
		self.photo_path = []
		self.predictor_path = predictor_path
		self.faces = {}
		# 人脸检测与特征提取
		self.detector = dlib.get_frontal_face_detector()
		self.predictor = dlib.shape_predictor(self.predictor_path)
	# 人脸定位和特征提取
	# img为numpy数组
	# 返回值为人脸特征(x, y)坐标的矩阵
	def get_faces(self, img, img_hsv, temp_img, temp_hsv, name, n=1):
		rects = self.detector(img, 1)
		if len(rects) < 1:
			print('[Warning]:No face detected...')
			return None
		return {name: [Face(img, img_hsv, temp_img, temp_hsv, np.array([[p.x, p.y] for p in self.predictor(img, rect).parts()]), i) for i, rect in enumerate(rects)]}
	# 读取图片
	def read_img(self, fname, scale=1):
		img = cv2.imdecode(np.fromfile(fname, dtype=np.uint8), -1)
		if not type(img):
			print('[ERROR]:Fail to Read %s' % fname)
			return None
		return img
	def read_and_mark(self, fname):
		img = self.read_img(fname)
		img_hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
		temp_img, temp_hsv = img.copy(), img_hsv.copy()
		return img, temp_img, self.get_faces(img, img_hsv, temp_img, temp_hsv, fname)

效果如下:

​​嘿嘿——小姐姐美颜之后是不是白了很多吖!

总结

本次文章就到这里啦!如需完整的打包好的项目源码基地见:#私信小编06#即可免费领取!

记得关注、评论、点赞三连哦~

到此这篇关于基于Opencv制作的美颜相机带你领略美颜特效的效果的文章就介绍到这了,更多相关Opencv 美颜相机内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • 超详细注释之OpenCV dlib实现人脸采集

    上一篇博客中,我们了解了什么是面部标志,以及如何使用dlib,OpenCV和Python检测它们.利用dlib的HOG SVM的形状预测器获得面部ROI中面部区域的68个点(x,y)坐标. 这一篇博客中,将演示如何使用NumPy数组切片魔术来分别访问每个面部部分并提取眼睛,眉毛,鼻子,嘴巴和下巴的特征. 1. 效果图 先上一张检测完的图: 也可以每一部分先标识出来: 2. 原理 面部标志主要是: 口 右眉 左眉 右眼 左眼 鼻子 下颚线 这一节即提取这些部分: 从图中可以看到假设是以0为下标的数

  • 手把手教你利用opencv实现人脸识别功能(附源码+文档)

    目录 一.环境 二.使用Haar级联进行人脸检测 三.Haar级联结合摄像头 四.使用SSD的人脸检测 五. SSD结合摄像头人脸检测 六.结语 一.环境 pip install opencv-python python3.9 pycharm2020 人狠话不多,直接上代码,注释在代码里面,不说废话. 二.使用Haar级联进行人脸检测 测试案例: 代码:(记得自己到下载地址下载对应的xml) # coding=gbk """ 作者:川川 @时间 : 2021/9/5 16:3

  • opencv基于Haar人脸检测和眼睛检测

    在这里,我们将进行人脸检测.最初,该算法需要大量正图像(面部图像)和负图像(无面部图像)来训练分类器.然后,我们需要从中提取特征.为此,使用下图所示的Haar功能.它们就像我们的卷积核.每个特征都是通过从黑色矩形下的像素总和中减去白色矩形下的像素总和而获得的单个值. 现在,每个内核的所有可能大小和位置都用于计算许多功能.(试想一下它需要多少计算?即使是一个24x24的窗口也会产生超过160000个特征).对于每个特征计算,我们需要找到白色和黑色矩形下的像素总和.为了解决这个问题,他们引入了整体形

  • 超详细注释之OpenCV实现视频实时人脸模糊和人脸马赛克

    目录 1. 效果图 2. 原理 2.1 什么是人脸模糊,如何将其用于人脸匿名化? 2.2 执行人脸模糊/匿名化的步骤 3. 源码 3.1 图像人脸模糊源码 3.2 实时视频流人脸模糊源码 参考 这篇博客将介绍人脸检测,然后使用Python,OpenCV模糊它们来"匿名化"每张图像,以确保隐私得到保护,保证没有人脸可以被识别如何使用. 并介绍俩种模糊的方法:简单高斯模糊.像素模糊. 人脸模糊和匿名化的实际应用包括: 公共/私人区域的隐私和身份保护 在线保护儿童(即在上传的照片中模糊未成年

  • OpenCV-Python实现人脸磨皮算法

    人脸磨皮是最基础的人脸美颜效果.主要分为祛斑,祛痘,淡化黑眼圈等步骤.通过前面的学习相信大家一眼都看得出来我们需要干什么才能识别人脸磨皮效果. 因为磨皮之后,脸部的杂质基本上就没有了,也可以说丢失了细节.那么肯定需要用到滤波函数.滤波的过程就是把图像的每一个像素值输入过滤器,得到平滑的图像. 而我们常用的滤波有均值滤波,高斯滤波以及双边滤波三种,到底选用那种滤波呢? 首先,均值滤波会因为是用周围像素的平均值代替原像素值,肯定会导致图像过于模糊,所以排除掉.其次,高斯滤波与均值滤波原理类似,只是高

  • 基于Opencv制作的美颜相机带你领略美颜特效的效果

    目录 导语 正文 总结 导语 ​现在每一次出门,女友就喜欢拍照!BUT 嫌弃我给拍的照片角度不对,采光不好....... ​ 总之一大堆理由,啥时候让我拍照的水平能有美颜相机三分之一的效果就好!​ 果然都是锻炼出来的,至少现在我能看出来朋友圈哪些小姐姐批没批过照片.​ ​​ ​逃不掉​ ​逃不掉啊,为了摆脱这种局面-- 立马给女友写了一款简易版本的美颜相机给她偷偷的用!这样子就不担心被锤了.机智如我.jpg ​​ 正文 环境安装: dlib库的安装 本博客提供三种方法进行安装 T1方法:pip

  • Python实战之基于OpenCV的美颜挂件制作

    目录 基于 Snapchat 的增强现实 胡子挂件融合 完整代码 眼镜挂件融合 完整代码 基于 Snapchat 的增强现实 胡子挂件融合 第一个项目中,我们将在检测到的脸上覆盖了一个小胡子.我们可以使用从摄像头捕获的连续视频帧,也可以使用单张测试图像.在进行实际讲解程序的关键步骤前,首先查看应用程序预期输出的结果图像: 项目的第一步是检测图像中的人脸.如上图所示,使用青色矩形绘制图像中检测到的人脸的位置和大小:接下来迭代图像中所有检测到的人脸,在其区域内搜索鼻子,粉红色矩形表示图像中检测到的鼻

  • 基于Python+OpenCV制作屏幕录制工具

    目录 应用平台 屏幕录制部分 计算视频最优fps及使用numpy计算中间帧数组 使用pynput监听键盘按键 如何保存MP4格式视频 源码 总结 最近有在使用屏幕录制软件录制桌面,在用的过程中突发奇想,使用python能不能做屏幕录制工具,也锻炼下自己的动手能力.接下准备写使用python如何做屏幕录制工具的系列文章: 录制屏幕制作视频 录制音频 合成视频,音频 基于pyqt5制作可视化窗口 大概上述四个部分,希望自己能够尽快完善,接下来开始使用python制作屏幕录制部分. 应用平台 wind

  • 基于C++ OpenCV制作电子相册查看器

    目录 前言 一.图片读取 二.图片展示 三.键盘控制 四.效果显示 五.源码 总结 前言 本文将使用OpenCV C++ 制作电子相册查看器.类似于win10系统的“照片”功能.接下来就具体来看看是如何一步步的实现吧. 一.图片读取 我们想要一张张的查看文件夹下的图片,第一步就得读取将该文件夹下的所有图片. 如上图所示,为我创建的文件夹,该文件夹下有14张图片.接下来我们就编写代码读取该文件夹下的所有图片.将读取到的图片存储在images容器. //读取文件夹下所有图片 string filen

  • 基于OpenCV的路面质量检测的实现

    本期我们将展示一种对路面类型和质量进行分类的方法及其步骤.为了测试这种方法,我们使用了我们制作的RTK数据集. 路面分类 该数据集[1]包含用低成本相机拍摄的图像,以及新兴国家常见的场景,其中包含未铺砌的道路和坑洼.路面类型是有关人或自动驾驶车辆应如何驾驶的重要信息.除了乘客舒适度和车辆维护以外,它还涉及每个人的安全.我们可以通过[2]中的简单卷积神经网络(CNN)结构来实现. 在这种方法中,我们对表面类型分类任务使用特定的模型,我们将其定义为以下类别:沥青,已铺设(用于所有其他类型的路面)和未

  • 基于OpenCV的网络实时视频流传输的实现

    很多小伙伴都不会在家里或者办公室安装网络摄像头或监视摄像头.但是有时,大家又希望能够随时随地观看视频直播. 大多数人会选择使用IP摄像机(Internet协议摄像机)而不是CCTV(闭路电视),因为它们具有更高的分辨率并降低了布线成本.在本文中,我们将重点介绍IP摄像机.IP摄像机是一种数字 摄像机,可以通过IP网络接收控制数据并发送图像数据,并且不需要本地记录设备.大多数IP摄像机都是基于RTSP(实时流协议)的,因此Internet浏览器本身"不支持"它. 01.如何使用Web浏览

  • 基于replaceChild制作简单的吞噬特效

    效果演示图: 源   码   查   看 [HTML代码说明] <ul class="list" id="list"> <li class="in">1</li> <li class="in">2</li> <li class="in">3</li> <li class="in">4</

  • 基于Vue制作组织架构树组件

    由于公司业务需求,需要开发一个展示组织架构的树组件(公司的项目是基于Vue).在GitHub上找了半天,这类组件不多,也没有符合业务需求的组件,所以决定自己造轮子! 分析 既然是树,那么每个节点都应该是相同的组件 节点下面套节点,所以节点组件应该是一个 递归组件 那么,问题来了.递归组件怎么写? 递归组件 Vue官方文档是这样说的: 组件在它的模板内可以递归地调用自己.不过,只有当它有 name 选项时才可以这么做 接下来,我们来写一个树节点递归组件: <template> <div c

  • 基于OpenCv的运动物体检测算法

    基于一个实现的基于OpenCv的运动物体检测算法,可以用于检测行人或者其他运动物体. #include <stdio.h> #include <cv.h> #include <cxcore.h> #include <highgui.h> int main( int argc, char** argv ) //声明IplImage指针 IplImage* pFrame = NULL; IplImage* pFrImg = NULL; IplImage* pBk

  • Python基于OpenCV实现人脸检测并保存

    本文实例为大家分享了Python基于OpenCV实现人脸检测,并保存的具体代码,供大家参考,具体内容如下 安装opencv 如果安装了pip的话,Opencv的在windows的安装可以直接通过cmd命令pip install opencv-python(只需要主要模块),也可以输入命令pip install opencv-contrib-python(如果需要main模块和contrib模块) 详情可以点击此处 导入opencv import cv2 所有包都包含haarcascade文件.这

随机推荐