python神经网络MobileNetV2模型的复现详解

目录
  • 什么是MobileNetV2模型
  • MobileNetV2网络部分实现代码
  • 图片预测

什么是MobileNetV2模型

MobileNet它哥MobileNetV2也是很不错的呢

MobileNet模型是Google针对手机等嵌入式设备提出的一种轻量级的深层神经网络,其使用的核心思想便是depthwise separable convolution。

MobileNetV2是MobileNet的升级版,它具有两个特征点:

1、Inverted residuals,在ResNet50里我们认识到一个结构,bottleneck design结构,在3x3网络结构前利用1x1卷积降维,在3x3网络结构后,利用1x1卷积升维,相比直接使用3x3网络卷积效果更好,参数更少,先进行压缩,再进行扩张。而在MobileNetV2网络部分,其采用Inverted residuals结构,在3x3网络结构前利用1x1卷积升维,在3x3网络结构后,利用1x1卷积降维,先进行扩张,再进行压缩

2、Linear bottlenecks,为了避免Relu对特征的破坏,在在3x3网络结构前利用1x1卷积升维,在3x3网络结构后,再利用1x1卷积降维后,不再进行Relu6层,直接进行残差网络的加法。

整体网络结构如下:(其中bottleneck进行的操作就是上述的创新操作)

MobileNetV2网络部分实现代码

#-------------------------------------------------------------#
#   MobileNetV2的网络部分
#-------------------------------------------------------------#
import math
import numpy as np
import tensorflow as tf
from tensorflow.keras import backend
from keras import backend as K
from keras.preprocessing import image
from keras.models import Model
from keras.layers.normalization import BatchNormalization
from keras.layers import Conv2D, Add, ZeroPadding2D, GlobalAveragePooling2D, Dropout, Dense
from keras.layers import MaxPooling2D,Activation,DepthwiseConv2D,Input,GlobalMaxPooling2D
from keras.applications import imagenet_utils
from keras.applications.imagenet_utils import decode_predictions
from keras.utils.data_utils import get_file

# TODO Change path to v1.1
BASE_WEIGHT_PATH = ('https://github.com/JonathanCMitchell/mobilenet_v2_keras/'
                    'releases/download/v1.1/')

# relu6!
def relu6(x):
    return K.relu(x, max_value=6)

# 用于计算padding的大小
def correct_pad(inputs, kernel_size):
    img_dim = 1
    input_size = backend.int_shape(inputs)[img_dim:(img_dim + 2)]

    if isinstance(kernel_size, int):
        kernel_size = (kernel_size, kernel_size)

    if input_size[0] is None:
        adjust = (1, 1)
    else:
        adjust = (1 - input_size[0] % 2, 1 - input_size[1] % 2)

    correct = (kernel_size[0] // 2, kernel_size[1] // 2)

    return ((correct[0] - adjust[0], correct[0]),
            (correct[1] - adjust[1], correct[1]))

# 使其结果可以被8整除,因为使用到了膨胀系数α
def _make_divisible(v, divisor, min_value=None):
    if min_value is None:
        min_value = divisor
    new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
    if new_v < 0.9 * v:
        new_v += divisor
    return new_v

def MobileNetV2(input_shape=[224,224,3],
                alpha=1.0,
                include_top=True,
                weights='imagenet',
                classes=1000):

    rows = input_shape[0]

    img_input = Input(shape=input_shape)

    # stem部分
    # 224,224,3 -> 112,112,32
    first_block_filters = _make_divisible(32 * alpha, 8)
    x = ZeroPadding2D(padding=correct_pad(img_input, 3),
                             name='Conv1_pad')(img_input)
    x = Conv2D(first_block_filters,
                      kernel_size=3,
                      strides=(2, 2),
                      padding='valid',
                      use_bias=False,
                      name='Conv1')(x)
    x = BatchNormalization(epsilon=1e-3,
                                  momentum=0.999,
                                  name='bn_Conv1')(x)
    x = Activation(relu6, name='Conv1_relu')(x)

    # 112,112,32 -> 112,112,16
    x = _inverted_res_block(x, filters=16, alpha=alpha, stride=1,
                            expansion=1, block_id=0)

    # 112,112,16 -> 56,56,24
    x = _inverted_res_block(x, filters=24, alpha=alpha, stride=2,
                            expansion=6, block_id=1)
    x = _inverted_res_block(x, filters=24, alpha=alpha, stride=1,
                            expansion=6, block_id=2)

    # 56,56,24 -> 28,28,32
    x = _inverted_res_block(x, filters=32, alpha=alpha, stride=2,
                            expansion=6, block_id=3)
    x = _inverted_res_block(x, filters=32, alpha=alpha, stride=1,
                            expansion=6, block_id=4)
    x = _inverted_res_block(x, filters=32, alpha=alpha, stride=1,
                            expansion=6, block_id=5)

    # 28,28,32 -> 14,14,64
    x = _inverted_res_block(x, filters=64, alpha=alpha, stride=2,
                            expansion=6, block_id=6)
    x = _inverted_res_block(x, filters=64, alpha=alpha, stride=1,
                            expansion=6, block_id=7)
    x = _inverted_res_block(x, filters=64, alpha=alpha, stride=1,
                            expansion=6, block_id=8)
    x = _inverted_res_block(x, filters=64, alpha=alpha, stride=1,
                            expansion=6, block_id=9)

    # 14,14,64 -> 14,14,96
    x = _inverted_res_block(x, filters=96, alpha=alpha, stride=1,
                            expansion=6, block_id=10)
    x = _inverted_res_block(x, filters=96, alpha=alpha, stride=1,
                            expansion=6, block_id=11)
    x = _inverted_res_block(x, filters=96, alpha=alpha, stride=1,
                            expansion=6, block_id=12)
    # 14,14,96 -> 7,7,160
    x = _inverted_res_block(x, filters=160, alpha=alpha, stride=2,
                            expansion=6, block_id=13)
    x = _inverted_res_block(x, filters=160, alpha=alpha, stride=1,
                            expansion=6, block_id=14)
    x = _inverted_res_block(x, filters=160, alpha=alpha, stride=1,
                            expansion=6, block_id=15)

    # 7,7,160 -> 7,7,320
    x = _inverted_res_block(x, filters=320, alpha=alpha, stride=1,
                            expansion=6, block_id=16)

    if alpha > 1.0:
        last_block_filters = _make_divisible(1280 * alpha, 8)
    else:
        last_block_filters = 1280

    # 7,7,320 -> 7,7,1280
    x = Conv2D(last_block_filters,
                      kernel_size=1,
                      use_bias=False,
                      name='Conv_1')(x)
    x = BatchNormalization(epsilon=1e-3,
                                  momentum=0.999,
                                  name='Conv_1_bn')(x)
    x = Activation(relu6, name='out_relu')(x)

    x = GlobalAveragePooling2D()(x)
    x = Dense(classes, activation='softmax',
                        use_bias=True, name='Logits')(x)

    inputs = img_input

    model = Model(inputs, x, name='mobilenetv2_%0.2f_%s' % (alpha, rows))

    # Load weights.
    if weights == 'imagenet':
        if include_top:
            model_name = ('mobilenet_v2_weights_tf_dim_ordering_tf_kernels_' +
                          str(alpha) + '_' + str(rows) + '.h5')
            weight_path = BASE_WEIGHT_PATH + model_name
            weights_path = get_file(
                model_name, weight_path, cache_subdir='models')
        else:
            model_name = ('mobilenet_v2_weights_tf_dim_ordering_tf_kernels_' +
                          str(alpha) + '_' + str(rows) + '_no_top' + '.h5')
            weight_path = BASE_WEIGHT_PATH + model_name
            weights_path = get_file(
                model_name, weight_path, cache_subdir='models')
        model.load_weights(weights_path)
    elif weights is not None:
        model.load_weights(weights)

    return model

def _inverted_res_block(inputs, expansion, stride, alpha, filters, block_id):
    in_channels = backend.int_shape(inputs)[-1]
    pointwise_conv_filters = int(filters * alpha)
    pointwise_filters = _make_divisible(pointwise_conv_filters, 8)
    x = inputs
    prefix = 'block_{}_'.format(block_id)

    # part1 数据扩张
    if block_id:
        # Expand
        x = Conv2D(expansion * in_channels,
                          kernel_size=1,
                          padding='same',
                          use_bias=False,
                          activation=None,
                          name=prefix + 'expand')(x)
        x = BatchNormalization(epsilon=1e-3,
                                      momentum=0.999,
                                      name=prefix + 'expand_BN')(x)
        x = Activation(relu6, name=prefix + 'expand_relu')(x)
    else:
        prefix = 'expanded_conv_'

    if stride == 2:
        x = ZeroPadding2D(padding=correct_pad(x, 3),
                                 name=prefix + 'pad')(x)

    # part2 可分离卷积
    x = DepthwiseConv2D(kernel_size=3,
                               strides=stride,
                               activation=None,
                               use_bias=False,
                               padding='same' if stride == 1 else 'valid',
                               name=prefix + 'depthwise')(x)
    x = BatchNormalization(epsilon=1e-3,
                                  momentum=0.999,
                                  name=prefix + 'depthwise_BN')(x)

    x = Activation(relu6, name=prefix + 'depthwise_relu')(x)

    # part3压缩特征,而且不使用relu函数,保证特征不被破坏
    x = Conv2D(pointwise_filters,
                      kernel_size=1,
                      padding='same',
                      use_bias=False,
                      activation=None,
                      name=prefix + 'project')(x)

    x = BatchNormalization(epsilon=1e-3,
                                  momentum=0.999,
                                  name=prefix + 'project_BN')(x)

    if in_channels == pointwise_filters and stride == 1:
        return Add(name=prefix + 'add')([inputs, x])
    return x

图片预测

建立网络后,可以用以下的代码进行预测。

def preprocess_input(x):
    x /= 255.
    x -= 0.5
    x *= 2.
    return x

if __name__ == '__main__':
    model = MobileNetV2(input_shape=(224, 224, 3))
    model.summary()
    img_path = 'elephant.jpg'
    img = image.load_img(img_path, target_size=(224, 224))
    x = image.img_to_array(img)
    x = np.expand_dims(x, axis=0)
    x = preprocess_input(x)
    print('Input image shape:', x.shape)

    preds = model.predict(x)
    print(np.argmax(preds))
    print('Predicted:', decode_predictions(preds, 1))

预测所需的已经训练好的MobileNetV2模型会在运行时自动下载,下载后的模型位于C:\Users\Administrator.keras\models文件夹内。

可以修改MobileNetV2内不同的alpha值实现不同depth的MobileNetV2模型。可选的alpha值有:

  Top-1 Top-5 10-5 Size Stem
MobileNetV2(alpha=0.35) 39.914 17.568 15.422 1.7M 0.4M
MobileNetV2(alpha=0.50) 34.806 13.938 11.976 2.0M 0.7M
MobileNetV2(alpha=0.75) 30.468 10.824 9.188 2.7M 1.4M
MobileNetV2(alpha=1.0) 28.664 9.858 8.322 3.5M 2.3M
MobileNetV2(alpha=1.3) 25.320 7.878 6.728 5.4M 3.8M

以上就是python神经网络MobileNetV2模型的复现详解的详细内容,更多关于MobileNetV2模型复现的资料请关注我们其它相关文章!

(0)

相关推荐

  • python神经网络AlexNet分类模型训练猫狗数据集

    目录 什么是AlexNet模型 训练前准备 1.数据集处理 2.创建Keras的AlexNet模型 开始训练 1.训练的主函数 2.Keras数据生成器 3.主训练函数全部代码 训练结果 最近在做实验室的工作,要用到分类模型,老板一星期催20次,我也是无语了,上有对策下有政策,在下先找个猫猫狗狗的数据集练练手,快乐极了 什么是AlexNet模型 AlexNet是2012年ImageNet竞赛冠军获得者Hinton和他的学生Alex Krizhevsky设计的.也是在那年之后,更多的更深的神经网络

  • python神经网络ResNet50模型的复现详解

    目录 什么是残差网络 什么是ResNet50模型 ResNet50网络部分实现代码 图片预测 什么是残差网络 最近看yolo3里面讲到了残差网络,对这个网络结构很感兴趣,于是了解到这个网络结构最初的使用是在ResNet网络里. Residual net(残差网络): 将靠前若干层的某一层数据输出直接跳过多层引入到后面数据层的输入部分. 意味着后面的特征层的内容会有一部分由其前面的某一层线性贡献. 其结构如下: 深度残差网络的设计是为了克服由于网络深度加深而产生的学习效率变低与准确率无法有效提升的

  • python神经网络Xception模型复现详解

    目录 什么是Xception模型 Xception网络部分实现代码 图片预测 Xception是继Inception后提出的对Inception v3的另一种改进,学一学总是好的 什么是Xception模型 Xception是谷歌公司继Inception后,提出的InceptionV3的一种改进模型,其改进的主要内容为采用depthwise separable convolution来替换原来Inception v3中的多尺寸卷积核特征响应操作. 在讲Xception模型之前,首先要讲一下什么是

  • python神经网络MobileNet模型的复现详解

    目录 什么是MobileNet模型 MobileNet网络部分实现代码 图片预测 什么是MobileNet模型 MobileNet是一种轻量级网络,相比于其它结构网络,它不一定是最准的,但是它真的很轻 MobileNet模型是Google针对手机等嵌入式设备提出的一种轻量级的深层神经网络,其使用的核心思想便是depthwise separable convolution. 对于一个卷积点而言: 假设有一个3×3大小的卷积层,其输入通道为16.输出通道为32.具体为,32个3×3大小的卷积核会遍历

  • python神经网络tensorflow利用训练好的模型进行预测

    目录 学习前言 载入模型思路 实现代码 学习前言 在神经网络学习中slim常用函数与如何训练.保存模型文章里已经讲述了如何使用slim训练出来一个模型,这篇文章将会讲述如何预测. 载入模型思路 载入模型的过程主要分为以下四步: 1.建立会话Session: 2.将img_input的placeholder传入网络,建立网络结构: 3.初始化所有变量: 4.利用saver对象restore载入所有参数. 这里要注意的重点是,在利用saver对象restore载入所有参数之前,必须要建立网络结构,因

  • python神经网络InceptionV3模型复现详解

    目录 神经网络学习小记录21——InceptionV3模型的复现详解 学习前言什么是InceptionV3模型InceptionV3网络部分实现代码图片预测 学习前言 Inception系列的结构和其它的前向神经网络的结构不太一样,每一层的内容不是直直向下的,而是分了很多的块. 什么是InceptionV3模型 InceptionV3模型是谷歌Inception系列里面的第三代模型,其模型结构与InceptionV2模型放在了同一篇论文里,其实二者模型结构差距不大,相比于其它神经网络模型,Inc

  • python神经网络MobileNetV2模型的复现详解

    目录 什么是MobileNetV2模型 MobileNetV2网络部分实现代码 图片预测 什么是MobileNetV2模型 MobileNet它哥MobileNetV2也是很不错的呢 MobileNet模型是Google针对手机等嵌入式设备提出的一种轻量级的深层神经网络,其使用的核心思想便是depthwise separable convolution. MobileNetV2是MobileNet的升级版,它具有两个特征点: 1.Inverted residuals,在ResNet50里我们认识

  • python神经网络MobileNetV3 large模型的复现详解

    目录 神经网络学习小记录38——MobileNetV3(large)模型的复现详解 学习前言什么是MobileNetV3代码下载MobileNetV3(large)的网络结构1.MobileNetV3(large)的整体结构2.MobileNetV3特有的bneck结构 网络实现代码 学习前言 为了防止某位我的粉丝寒假没有办法正常工作,我赶紧看了看MobilenetV3. 什么是MobileNetV3 最新的MobileNetV3的被写在了论文<Searching for MobileNetV3

  • python神经网络MobileNetV3 small模型的复现详解

    目录 什么是MobileNetV3 large与small的区别 MobileNetV3(small)的网络结构 1.MobileNetV3(small)的整体结构 2.MobileNetV3特有的bneck结构 网络实现代码 什么是MobileNetV3 不知道咋地,就是突然想把small也一起写了. 最新的MobileNetV3的被写在了论文<Searching for MobileNetV3>中. 它是mobilnet的最新版,据说效果还是很好的. 作为一种轻量级网络,它的参数量还是一如

  • python神经网络Batch Normalization底层原理详解

    目录 什么是Batch Normalization Batch Normalization的计算公式 Bn层的好处 为什么要引入γ和β变量 Bn层的代码实现 什么是Batch Normalization Batch Normalization是神经网络中常用的层,解决了很多深度学习中遇到的问题,我们一起来学习一哈. Batch Normalization是由google提出的一种训练优化方法.参考论文:Batch Normalization Accelerating Deep Network T

  • Python pandas RFM模型应用实例详解

    本文实例讲述了Python pandas RFM模型应用.分享给大家供大家参考,具体如下: 什么是RFM模型 根据美国数据库营销研究所Arthur Hughes的研究,客户数据库中有3个神奇的要素,这3个要素构成了数据分析最好的指标: 最近一次消费 (Recency): 客户最近一次交易时间的间隔.R值越大,表示客户交易距今越久,反之则越近: 消费频率 (Frequency): 客户在最近一段时间内交易的次数.F值越大,表示客户交易越频繁,反之则不够活跃: 消费金额 (Monetary): 客户

  • Python自动化测试PO模型封装过程详解

    在自动化中, Selenium 自动化测试中有一个名字经常被提及 PageObject( 思想与面向对象的特征相 同 ) ,通常 PO 模型可以大大提高测试用例的维护效率 优点:可重用,业务和对象分离,代码结构清晰,方便代码维护 核心要素 1. 在 PO 模式中抽离封装集成一个BasePage 类,该基类应该拥有一个只实现 webdriver 实例的属性 2. 每一个 page 都继承 BasePage ,通过 driver 来管理本 page 中元素,将 page 中的操作封装成一个个方法 3

随机推荐