详解Python查找算法的实现(线性、二分、分块、插值)

目录
  • 1. 线性查找
  • 2. 二分查找
  • 3. 插值查找
  • 4. 分块查找
  • 5. 总结

查找算法是用来检索序列数据(群体)中是否存在给定的数据(关键字),常用查找算法有:

  • 线性查找:线性查找也称为顺序查找,用于在无序数列中查找。
  • 二分查找:二分查找也称为折半查找,其算法用于有序数列。
  • 插值查找:插值查找是对二分查找算法的改进。
  • 分块查找:又称为索引顺序查找,它是线性查找的改进版本。
  • 树表查找:树表查找又可分二叉查找树、平衡二叉树查找。
  • 哈希查找:哈希查找可以直接通过关键字查找到所需要数据。

因树表查找、哈希查找的所需篇幅较多,就不在本文讲解。本文将详细介绍除树表、哈希之外的查找算法,并分析每一种算法的优点和缺点,并提出相应的优化方案。

1. 线性查找

线性查找也称为顺序查找,线性查找属于原始、穷举、暴力查找算法。容易理解、编码实现也简单。但是在数据量较多时,因其算法思想是朴素、穷举的,算法中没有太多优化设计,性能会很低下。

线性查找思想:

  • 从头至尾逐一扫描原始列表中的每一个数据,并和给定的关键字进行比较。
  • 如果比较相等,则查找成功。
  • 当扫描结束后,仍然没有找到与给定关键字相等的数据,则宣布查找失败。

根据线性查找算法的描述,很容易编码实现:

'''
线性查找算法
参数:
    nums: 序列
    key:关键字
返回值:
    关键字在序列中的位置
    如果没有,则返回 -1
'''
def line_find(nums, key):
    for i in range(len(nums)):
        if nums[i] == key:
            return i
    return -1
'''
测试线性算法
'''
if __name__ == "__main__":
    nums = [4, 1, 8, 10, 3, 5]
    key = int(input("请输入要查找的关键字:"))
    pos = line_find(nums, key)
    print("关键字 {0} 在数列的第 {1} 位置".format(key, pos))
'''
输出结果:
请输入要查找的关键字:3
关键字 3 在数列的 4 位置
'''

线性查找算法的平均时间复杂度分析。

1.运气最好的情况:如果要查找的关键字恰好在数列的第 1 个位置,则只需要查找 1 次就可以了。

如在数列=[4,1,8,10,3,5]中查找关键字 4 。

只需要查找 1 次。

2.运气最不好的情况:一至扫描到数列最尾部时,才找到关键字。

如在数列=[4,1,8,10,3,5]中查找是否存在关键字 5 。

则需要查找的次数等于数列的长度,此处即为 6 次。

3.运气不好不坏:如果要查找的关键字在数列的中间某个位置,则查找的概率是 1/n 。

n 为数列长度。

线性查找的平均查找次数应该=(1+n)/2。换成大 O 表示法则为 O(n) 。

大 O 表示法中忽视常量。

线性查找最糟糕情况是:扫描完整个数列后,没有所要查找的关键字。

如在数列=[4,1,8,10,3,5]中查找是否存在关键字 12 。

扫描了 6 次后,铩羽而归!!

改良线性查找算法

可以对线性查找算法进行相应的优化。如设置“前哨站”。所谓“前哨站”,就是把要查找的关键字在查找之前插入到数列的尾部。

def line_find_(nums, key):
    i = 0
    while nums[i] != key:
        i += 1
    return -1 if i == len(nums)-1 else i

'''
测试线性算法
'''
if __name__ == "__main__":
    nums = [4, 1, 8, 10, 3, 5]
    key = int(input("请输入要查找的关键字:"))
    # 查找之前,先把关键字存储到列到的尾部
    nums.append(key)
    pos = line_find_(nums, key)
    print("关键字 {0} 在数列的第 {1} 位置".format(key, pos))

用"前哨站"优化后的线性查找算法的时间复杂度没有变化,O(n)。或者说从 2 者代码上看,也没有太多变化。

但从代码的实际运行角度而言,第 2 种方案减少了 if 指令的次数,同样减少了编译后的指令,也就减少了 CPU执行指令的次数,这种优化属于微优化,不是算法本质上的优化。

使用计算机编程语言所编写的代码为伪指令代码。

经过编译后的指令代码叫 CPU 指令集。

有一种优化方案就是减少编译后的指令集。

2. 二分查找

二分查找属于有序查找,所谓有序查找,指被查找的数列必须是有序的。如在数列=[4,1,8,10,3,5,12]中查找是否存在关键字 4 ,因数列不是有序的,所以不能使用二分查找,如果要使用二分查找算法,则需要先对数列进行排序。

二分查找使用了二分(折半)算法思想,二分查找算法中有 2 个关键信息需要随时获取:

  • 一个是数列的中间位置 mid_pos。
  • 一个是数列的中间值mid_val。

现在通过在数列 nums=[1,3,4,5,8,10,12] 中查找关键字 8来了解二分查找的算法流程。

在进行二分查找之前,先定义 2 个位置(指针)变量:

  • 左指针 l_idx 初始指向数列的最左边数字。
  • 右指针 r_idx 初始指向数列的最右边数字。

第 1 步:通过左、右指针的当前位置计算出数列的中间位置 mid_pos=3,并根据 mid_pos 的值找出数列中间位置所对应的值 mid_val=nums[mid_pos] 是 5

二分查找算法的核心就是要找出数列中间位置的值。

第 2 步:把数列中间位置的值和给定的关键字相比较。这里关键字是 8,中间位置的值是 5,显然 8 是大于 5,因为数列是有序的,自然会想到没有必要再与数列中 5 之前的数字比较,而是专心和 5 之后的数字比较。

一次比较后再次查找的数列范围缩小了一半。这也是二分算法的由来。

第 3 步:根据比较结果,调整数列的大小,这里的大小调整不是物理结构上调整,而是逻辑上调整,调整后原数列没有变化。也就是通过修改左指针或右指针的位置,从逻辑上改变数列大小。调整后的数列如下图。

二分查找算法中数列的范围由左指针到右指针的长度决定。

第 4 步:重复上述步骤,至到找到或找不到为止。

编码实现二分查找算法

'''
二分查找算法
'''
def binary_find(nums, key):
    # 初始左指针
    l_idx = 0
    # 初始在指针
    r_ldx = len(nums) - 1
    while l_idx <= r_ldx:
        # 计算出中间位置
        mid_pos = (r_ldx + l_idx) // 2
        # 计算中间位置的值
        mid_val = nums[mid_pos]
        # 与关键字比较
        if mid_val == key:
            # 出口一:比较相等,有此关键字,返回关键字所在位置
            return mid_pos
        elif mid_val > key:
            # 说明查找范围应该缩少在原数的左边
            r_ldx = mid_pos - 1
        else:
            l_idx = mid_pos + 1
    # 出口二:没有查找到给定关键字
    return -1

'''
测试二分查找
'''
if __name__ == "__main__":
    nums = [1, 3, 4, 5, 8, 10, 12]
    key = 3
    pos = binary_find(nums, key)
    print(pos)

通过前面对二分算法流程的分析,可知二分查找的子问题和原始问题是同一个逻辑,所以可以使用递归实现:

'''
递归实现二分查找
'''
def binary_find_dg(nums, key, l_idx, r_ldx):
    if l_idx > r_ldx:
        # 出口一:没有查找到给定关键字
        return -1
    # 计算出中间位置
    mid_pos = (r_ldx + l_idx) // 2
    # 计算中间位置的值
    mid_val = nums[mid_pos]
    # 与关键字比较
    if mid_val == key:
        # 出口二:比较相等,有此关键字,返回关键字所在位置
        return mid_pos
    elif mid_val > key:
        # 说明查找范围应该缩少在原数的左边
        r_ldx = mid_pos - 1
    else:
        l_idx = mid_pos + 1
    return binary_find_dg(nums, key, l_idx, r_ldx)
'''
测试二分查找
'''
if __name__ == "__main__":
    nums = [1, 3, 4, 5, 8, 10, 12]
    key = 8
    pos = binary_find_dg(nums, key,0,len(nums)-1)
    print(pos)

二分查找性能分析:

二分查找的过程用树形结构描述会更直观,当搜索完毕后,绘制出来树结构是一棵二叉树。

1.如上述代码执行过程中,先找到数列中的中间数字 5,然后以 5 为根节点构建唯一结点树。

2.5 和关键字 8 比较后,再在以数字 5 为分界线的右边数列中找到中间数字10,树形结构会变成下图所示。

3.10 和关键字 8比较后,再在10 的左边查找。

查找到8 后,意味着二分查找已经找到结果,只需要 3 次就能查找到最终结果。

从二叉树的结构上可以直观得到结论:二分查找关键字的次数由关键字在二叉树结构中的深度决定。

4.上述是查找给定的数字8,为了能查找到数列中的任意一个数字,最终完整的树结构应该如下图所示。

很明显,树结构是标准的二叉树。从树结构上可以看出,无论查找任何数字,最小是 1 次,如查找数字 5,最多也只需要 3 次,比线性查找要快很多。

根据二叉树的特性,结点个数为 n 的树的深度为 h=log2(n+1),所以二分查找算法的大 O 表示的时间复杂度为 O(logn),是对数级别的时间度。

当对长度为1000的数列进行二分查找时,所需次数最多只要 10 次,二分查找算法的效率显然是高效的。

但是,二分查找需要对数列提前排序,前面的时间复杂度是没有考虑排序时间的。所以,二分查找一般适合数字变化稳定的有序数列。

3. 插值查找

插值查找本质是二分查找,插值查找对二分查找算法中查找中间位置的计算逻辑进行了改进。

原生二分查找算法中计算中间位置的逻辑:中间位置等于左指针位置加上右指针位置然后除以 2

    # 计算中间位置
    mid_pos = (r_ldx + l_idx) // 2

插值算法计算中间位置逻辑如下所示:

key 为要查找的关键字!!

# 插值算法中计算中间位置
mid_pos = l_idx + (key - nums[l_idx]) // (nums[r_idx] - nums[l_idx]) * (r_idx - l_idx)

编码实现插值查找:

# 插值查找基于二分法,只是mid计算方法不同
def binary_search(nums, key):
    l_idx = 0
    r_idx = len(nums) - 1
    old_mid = -1
    mid_pos = None
    while l_idx < r_idx and nums[0] <= key and nums[r_idx] >= key and old_mid != mid_pos:
        # 中间位置计算
        mid_pos = l_idx + (key - nums[l_idx]) // (nums[r_idx] - nums[l_idx]) * (r_idx - l_idx)
        old_mid = mid_pos
        if nums[mid_pos] == key:
            return "index is {}, target value is {}".format(mid_pos, nums[mid_pos])
            # 此时目标值在中间值右边,更新左边界位置
        elif nums[mid_pos] < key:
            l_idx = mid_pos + 1
        # 此时目标值在中间值左边,更新右边界位置
        elif nums[mid_pos] > key:
            r_idx = mid_pos - 1
    return "Not find"

li =[1, 3, 4, 5, 8, 10, 12]
print(binary_search(li, 6))

插值算法的中间位置计算时,对中间位置的计算有可能多次计算的结果是一样的,此时可以认为查找失败。

插值算法的性能介于线性查找和二分查找之间。

当数列中数字较多且分布又比较均匀时,插值查找算法的平均性能比折半查找要好的多。如果数列中数据分布非常不均匀,此种情况下插值算法并不是最好的选择。

4. 分块查找

分块查找类似于数据库中的索引查询,所以分块查找也称为索引查找。其算法的核心还是线性查找。

现有原始数列 nums=[5,1,9,11,23,16,12,18,24,32,29,25],需要查找关键字11 是否存在。

第 1 步:使用分块查找之前,先要对原始数列按区域分成多个块。至于分成多少块,可根据实际情况自行定义。分块时有一个要求,前一个块中的最大值必须小于后一个块的最小值。

块内部无序,但要保持整个数列按块有序。

分块查找要求原始数列从整体上具有升序或降序趋势,如果数列的分布不具有趋向性,如果仍然想使用分块查找,则需要进行分块有序调整。

第 2 步:根据分块信息,建立索引表。索引表至少应该有 2 个字段,每一块中的最大值数字以及每一块的起始地址。显然索引表中的数字是有序的。

第 3 步:查找给定关键字时,先查找索引表,查询关键字应该在那个块中。如查询关键字 29,可知应该在第三块中,然后根据索引表中所提供的第三块的地址信息,再进入第三块数列,按线性匹配算法查找29 具体位置。

编码实现分块查找:

先编码实现根据分块数量、创建索引表,这里使用二维列表保存储索引表中的信息。

'''
分块:建立索引表
参数:
    nums 原始数列
    blocks 块大小
'''
def create_index_table(nums, blocks):
    # 索引表使用列表保存
    index_table = []
    # 每一块的数量
    n = len(nums) // blocks
    for i in range(0, len(nums), n):
        # 索引表中的每一行记录
        tmp_lst = []
        # 最大值
        tmp_lst.append(max(nums[i:i + n-1]))
        # 起始地址
        tmp_lst.append(i)
        # 终止地址
        tmp_lst.append(i + n - 1)
        # 添加到索引表中
        index_table.append(tmp_lst)
    return index_table
'''
测试分块
'''
nums = [5, 1, 9, 11, 23, 16, 12, 18, 24, 32, 29, 25]
it = create_index_table(nums, 3)
print(it)
'''
输出结果:
[[11, 0, 3], [23, 4, 7], [32, 8, 11]]
'''

代码执行后,输出结果和分析的结果一样。

以上代码仅对整体趋势有序的数列进行分块。如果整体不是趋向有序,则需要提供相应块排序方案,有兴趣者自行完成。

如上代码仅为说明分块查找算法。

分块查找的完整代码:

'''
分块:建立索引表
参数:
    nums 原始数列
    blocks 块大小
'''
def create_index_table(nums, blocks):
    # 索引表使用列表保存
    index_table = []
    # 每一块的数量
    n = len(nums) // blocks
    for i in range(0, len(nums), n):
        tmp_lst = []
        tmp_lst.append(max(nums[i:i + n - 1]))
        tmp_lst.append(i)
        tmp_lst.append(i + n - 1)
        index_table.append(tmp_lst)
    return index_table

'''
使用线性查找算法在对应的块中查找
'''
def lind_find(nums, start, end):
    for i in range(start, end):
        if key == nums[i]:
            return i
            break
    return -1

'''
测试分块
'''
nums = [5, 1, 9, 11, 23, 16, 12, 18, 24, 32, 29, 25]
key = 16
# 索引表
it = create_index_table(nums, 3)
# 索引表的记录编号
pos = -1
# 在索引表中查询
for n in range(len(it) - 1):
    # 是不是在第一块中
    if key <= it[0][0]:
        pos = 0
    # 其它块中
    if it[n][0] < key <= it[n + 1][0]:
        pos = n + 1
        break
if pos == -1:
    print("{0} 在 {1} 数列中不存在".format(key, nums))
else:
    idx = lind_find(nums, it[pos][1], it[pos][2] + 1)
    if idx != -1:
        print("{0} 在 {1} 数列的 {2} 位置".format(key, nums, idx))
    else:
        print("{0} 在 {1} 数列中不存在".format(key, nums))
'''
输出结果
16 在 [5, 1, 9, 11, 23, 16, 12, 18, 24, 32, 29, 25] 数列的第 5 位置
'''

分块查找对于整体趋向有序的数列,其查找性能较好。但如果原始数列整体不是有序,则需要提供块排序算法,时间复杂度没有二分查找算法好。

分块查找需要建立索引表,这也需要额外的存储空间,其空间复杂度较高。其优于二分的地方在于只需要对原始数列进行部分排序。本质还是以线性查找为主。

5. 总结

本文讲解了线性、二分、插值、分块查找算法。除此之外,还有其它如树表查找、哈希查找等算法。

分块算法可认为是对线性查找算法的优化。

插值查找可认为是在二分算法基础上的一个变化。

算法没有固定模式,如果学会了二分查找算法,则认为是学会了一招,需要学会领悟,然后再在这一招上演变出更多变化。

以上就是详解Python查找算法的实现(线性、二分、分块、插值)的详细内容,更多关于Python查找算法的资料请关注我们其它相关文章!

(0)

相关推荐

  • Python如何实现的二分查找算法

    先来看个用Python实现的二分查找算法实例 import sys def search2(a,m): low = 0 high = len(a) - 1 while(low <= high): mid = (low + high)/2 midval = a[mid] if midval < m: low = mid + 1 elif midval > m: high = mid - 1 else: print mid return mid print -1 return -1 if _

  • Python查找算法之分块查找算法的实现

    一.分块查找算法 分块查找是二分法查找和顺序查找的改进方法,分块查找要求索引表是有序的,对块内结点没有排序要求,块内结点可以是有序的也可以是无序的. 分块查找就是把一个大的线性表分解成若干块,每块中的节点可以任意存放,但块与块之间必须排序.与此同时,还要建立一个索引表,把每块中的最大值作为索引表的索引值,此索引表需要按块的顺序存放到一个辅助数组中.查找时,首先在索引表中进行查找,确定要找的结点所在的块.由于索引表是排序的,因此,对索引表的查找可以采用顺序查找或二分查找:然后,在相应的块中采用顺序

  • Python实现七大查找算法的示例代码

    查找算法 -- 简介 查找(Searching)就是根据给定的某个值,在查找表中确定一个其关键字等于给定值的数据元素.     查找表(Search Table):由同一类型的数据元素构成的集合     关键字(Key):数据元素中某个数据项的值,又称为键值     主键(Primary Key):可唯一的标识某个数据元素或记录的关键字 查找表按照操作方式可分为:         1.静态查找表(Static Search Table):只做查找操作的查找表.它的主要操作是:         ①

  • Python查找算法之插补查找算法的实现

    一.插补查找算法 插补查找算法又称为插值查找,它是折半查找算法的改进版.插补查找是按照数据的分布,利用公式预测键值所在的位置,快速缩小键值所在序列的范围,慢慢逼近,直到查找到数据为止.根据描述来看,插值查找类似于平常查英文字典的方法.例如,在查一个以字母 D 开头的英文单词时,决不会用折半查找法.根据英文词典的查找顺序可知,D 开头的单词应该在字典较前的部分,因此可以从字典前部的某处开始查找.键值的索引计算,公式如下: middle=left+(target-data[left])/(data[

  • Python 语言实现六大查找算法

    目录 一.顺序查找算法 二.折半查找算法 三.插补查找算法 四.哈希查找算法 五.分块查找算法 六.斐波那契查找算法 七.六种查找算法的时间复杂度 一.顺序查找算法 顺序查找又称为线性查找,是最简单的查找算法.这种算法就是按照数据的顺序一项一项逐个查找,所以不管数据顺序如何,都得从头到尾地遍历一次.顺序查找的优点就是数据在查找前,不需要对其进行任何处理(包括排序).缺点是查找速度慢,如果数据列的第一个数据就是想要查找的数据,则该算法查找速度为最快,只需查找一次即可:如果查找的数据是数据列的最后一

  • 详解Python查找算法的实现(线性、二分、分块、插值)

    目录 1. 线性查找 2. 二分查找 3. 插值查找 4. 分块查找 5. 总结 查找算法是用来检索序列数据(群体)中是否存在给定的数据(关键字),常用查找算法有: 线性查找:线性查找也称为顺序查找,用于在无序数列中查找. 二分查找:二分查找也称为折半查找,其算法用于有序数列. 插值查找:插值查找是对二分查找算法的改进. 分块查找:又称为索引顺序查找,它是线性查找的改进版本. 树表查找:树表查找又可分二叉查找树.平衡二叉树查找. 哈希查找:哈希查找可以直接通过关键字查找到所需要数据. 因树表查找

  • 详解Python排序算法的实现(冒泡,选择,插入,快速)

    目录 1. 前言 2. 冒泡排序算法 2.1 摆擂台法 2.2 相邻两个数字相比较 3. 选择排序算法 4. 插入排序 5. 快速排序 6. 总结 1. 前言 所谓排序,就是把一个数据群体按个体数据的特征按从大到小或从小到大的顺序存放. 排序在应用开发中很常见,如对商品按价格.人气.购买数量……显示. 初学编程者,刚开始接触的第一个稍微有点难理解的算法应该是排序算法中的冒泡算法. 我初学时,“脑思维”差点绕在 2 个循环结构的世界里出不来了.当时,老师要求我们死记冒泡的口诀,虽然有点搞笑,但是当

  • 详解Python查找谁删了你的微信

    导语: 哈喽,哈喽~小编不知道你有没有经历过,想联系一位很长时间没有联系的朋友,发现对方很早以前已经把你删除了,而你还一无所知.反正小编经历过! 每个人的微信通信录里都存在一些「僵尸粉」,他们默默地躺在联系人列表中,你以为对方还是朋友,但是实际上,对方早已把你从好友列表中删了,那如何来筛选出这群人呢? 正文: 在开始编写脚本之前,需要做好如下准备工作 一部 Root 后的 Android 手机或者模拟器,如果没有 Root 的设备,推荐使用网易 MuMu 模拟器 Android 开发环境.And

  • 详解Python中图像边缘检测算法的实现

    目录 写在前面 1.一阶微分算子 1.1 Prewitt算子 1.2 Sobel算子 2.二阶微分算子 2.1 Laplace算子 2.2 LoG算子 3.Canny边缘检测 写在前面 从本节开始,计算机视觉教程进入第三章节——图像特征提取.在本章,你会见到一张简简单单的图片中蕴含着这么多你没注意到的细节特征,而这些特征将会在今后更高级的应用中发挥着极其重要的作用.本文讲解基础特征之一——图像边缘. 本文采用面向对象设计,定义了一个边缘检测类EdgeDetect,使图像边缘检测算法的应用更简洁,

  • 详解Python中4种超参自动优化算法的实现

    目录 一.网格搜索(Grid Search) 二.随机搜索(Randomized Search) 三.贝叶斯优化(Bayesian Optimization) 四.Hyperband 总结 大家好,要想模型效果好,每个算法工程师都应该了解的流行超参数调优技术. 今天我给大家总结超参自动优化方法:网格搜索.随机搜索.贝叶斯优化 和 Hyperband,并附有相关的样例代码供大家学习. 一.网格搜索(Grid Search) 网格搜索是暴力搜索,在给定超参搜索空间内,尝试所有超参组合,最后搜索出最优

  • Python算法练习之二分查找算法的实现

    目录 1. 算法描述 2. 算法分析 3. 算法思路 4. 代码实现 纯算法实现 递归法实现 1. 算法描述 二分法是一种效率比较高的搜索方法 回忆之前做过的猜数字的小游戏,预先给定一个小于100的正整数x,让你猜猜测过程中给予大小判断的提示,问你怎样快速地猜出来? 我们之前做的游戏给定的是10次机会,如果我们学会.二分查找法以后,不管数字是多少,最多只需要7次就能猜到数字. 2. 算法分析 1.必须是有序的序列. 2.对数据量大小有要求. 数据量太小不适合二分查找,与直接遍历相比效率提升不明显

  • 详解Python OpenCV图像分割算法的实现

    目录 前言 1.图像二值化 2.自适应阈值分割算法 3.Otsu阈值分割算法 4.基于轮廓的字符分离 4.1轮廓检测 4.2轮廓绘制 4.3包围框获取 4.4矩形绘制 前言 图像分割是指根据灰度.色彩.空间纹理.几何形状等特征把图像划分成若干个互不相交的区域. 最简单的图像分割就是将物体从背景中分割出来 1.图像二值化 cv2.threshold是opencv-python中的图像二值化方法,可以实现简单的分割功能. retval, dst = cv2.threshold(src, thresh

  • Python查找算法之折半查找算法的实现

    一.折半查找算法 折半查找算法又称为二分查找算法,折半查找算法是将数据分割成两等份,首先用键值(要查找的数据)与中间值进行比较.如果键值小于中间值,可确定要查找的键值在前半段:如果键值大于中间值,可确定要查找的键值在后半段.然后对前半段(后半段)进行分割,将其分成两等份,再对比键值.如此循环比较.分割,直到找到数据或者确定数据不存在为止.折半查找的缺点是只适用于已经初步排序好的数列:优点是查找速度快. 生活中也有类似于折半查找的例子,例如,猜数字游戏.在游戏开始之前,首先会给出一定的数字范围(例

  • PHP二分查找算法的实现方法示例

    本文实例讲述了PHP二分查找算法的实现方法.分享给大家供大家参考,具体如下: 二分查找法需要数组是一个有序的数组 假设我们的数组是一个递增的数组,首先我们需要找到数组的中间位置. 1. 要知道中间位置就需要知道起始位置和结束位置,然后取出中间位置的值来和我们的值做对比. 2. 如果中间值大于我们的给定值,说明我们的值在中间位置之前,此时需要再次二分,因为在中间之前,所以我们需要变的值是结束位置的值,此时结束位置的值应该是我们此时的中间位置. 3. 反之,如果中间值小于我们给定的值,那么说明给定值

随机推荐