pytorch MSELoss计算平均的实现方法

给定损失函数的输入y,pred,shape均为bxc。

若设定loss_fn = torch.nn.MSELoss(reduction='mean'),最终的输出值其实是(y - pred)每个元素数字的平方之和除以(bxc),也就是在batch和特征维度上都取了平均。

如果只想在batch上做平均,可以这样写:

loss_fn = torch.nn.MSELoss(reduction='sum')
loss = loss_fn(pred, y) / pred.size(0)

补充:PyTorch中MSELoss的使用

参数

torch.nn.MSELoss(size_average=None, reduce=None, reduction: str = 'mean')

size_average和reduce在当前版本的pytorch已经不建议使用了,只设置reduction就行了。

reduction的可选参数有:'none' 、'mean' 、'sum'

reduction='none':求所有对应位置的差的平方,返回的仍然是一个和原来形状一样的矩阵。

reduction='mean':求所有对应位置差的平方的均值,返回的是一个标量。

reduction='sum':求所有对应位置差的平方的和,返回的是一个标量。

更多可查看官方文档​

举例

首先假设有三个数据样本分别经过神经网络运算,得到三个输出与其标签分别是:

y_pre = torch.Tensor([[1, 2, 3],
                      [2, 1, 3],
                      [3, 1, 2]])

y_label = torch.Tensor([[1, 0, 0],
                        [0, 1, 0],
                        [0, 0, 1]])

如果reduction='none':

criterion1 = nn.MSELoss(reduction='none')
loss1 = criterion1(x, y)
print(loss1)

则输出:

tensor([[0., 4., 9.],

[4., 0., 9.],

[9., 1., 1.]])

如果reduction='mean':

criterion2 = nn.MSELoss(reduction='mean')
loss2 = criterion2(x, y)
print(loss2)

则输出:

tensor(4.1111)

如果reduction='sum':

criterion3 = nn.MSELoss(reduction='sum')
loss3 = criterion3(x, y)
print(loss3)

则输出:

tensor(37.)

在反向传播时的使用

一般在反向传播时,都是先求loss,再使用loss.backward()求loss对每个参数 w_ij和b的偏导数(也可以理解为梯度)。

这里要注意的是,只有标量才能执行backward()函数,因此在反向传播中reduction不能设为'none'。

但具体设置为'sum'还是'mean'都是可以的。

若设置为'sum',则有Loss=loss_1+loss_2+loss_3,表示总的Loss由每个实例的loss_i构成,在通过Loss求梯度时,将每个loss_i的梯度也都考虑进去了。

若设置为'mean',则相比'sum'相当于Loss变成了Loss*(1/i),这在参数更新时影响不大,因为有学习率a的存在。

以上为个人经验,希望能给大家一个参考,也希望大家多多支持我们。如有错误或未考虑完全的地方,望不吝赐教。

(0)

相关推荐

  • Pytorch中accuracy和loss的计算知识点总结

    这几天关于accuracy和loss的计算有一些疑惑,原来是自己还没有弄清楚. 给出实例 def train(train_loader, model, criteon, optimizer, epoch): train_loss = 0 train_acc = 0 num_correct= 0 for step, (x,y) in enumerate(train_loader): # x: [b, 3, 224, 224], y: [b] x, y = x.to(device), y.to(de

  • Pytorch 的损失函数Loss function使用详解

    1.损失函数 损失函数,又叫目标函数,是编译一个神经网络模型必须的两个要素之一.另一个必不可少的要素是优化器. 损失函数是指用于计算标签值和预测值之间差异的函数,在机器学习过程中,有多种损失函数可供选择,典型的有距离向量,绝对值向量等. 损失Loss必须是标量,因为向量无法比较大小(向量本身需要通过范数等标量来比较). 损失函数一般分为4种,平方损失函数,对数损失函数,HingeLoss 0-1 损失函数,绝对值损失函数. 我们先定义两个二维数组,然后用不同的损失函数计算其损失值. import

  • 基于MSELoss()与CrossEntropyLoss()的区别详解

    基于pytorch来讲 MSELoss()多用于回归问题,也可以用于one_hotted编码形式, CrossEntropyLoss()名字为交叉熵损失函数,不用于one_hotted编码形式 MSELoss()要求batch_x与batch_y的tensor都是FloatTensor类型 CrossEntropyLoss()要求batch_x为Float,batch_y为LongTensor类型 (1)CrossEntropyLoss() 举例说明: 比如二分类问题,最后一层输出的为2个值,比

  • 解决Pytorch训练过程中loss不下降的问题

    在使用Pytorch进行神经网络训练时,有时会遇到训练学习率不下降的问题.出现这种问题的可能原因有很多,包括学习率过小,数据没有进行Normalization等.不过除了这些常规的原因,还有一种难以发现的原因:在计算loss时数据维数不匹配. 下面是我的代码: loss_function = torch.nn.MSE_loss() optimizer.zero_grad() output = model(x_train) loss = loss_function(output, y_train)

  • pytorch MSELoss计算平均的实现方法

    给定损失函数的输入y,pred,shape均为bxc. 若设定loss_fn = torch.nn.MSELoss(reduction='mean'),最终的输出值其实是(y - pred)每个元素数字的平方之和除以(bxc),也就是在batch和特征维度上都取了平均. 如果只想在batch上做平均,可以这样写: loss_fn = torch.nn.MSELoss(reduction='sum') loss = loss_fn(pred, y) / pred.size(0) 补充:PyTorc

  • 在Pytorch中计算卷积方法的区别详解(conv2d的区别)

    在二维矩阵间的运算: class torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True) 对由多个特征平面组成的输入信号进行2D的卷积操作.详解 torch.nn.functional.conv2d(input, weight, bias=None, stride=1, padding=0, dilation=1, groups=1)

  • 解决pytorch GPU 计算过程中出现内存耗尽的问题

    Pytorch GPU运算过程中会出现:"cuda runtime error(2): out of memory"这样的错误.通常,这种错误是由于在循环中使用全局变量当做累加器,且累加梯度信息的缘故,用官方的说法就是:"accumulate history across your training loop".在默认情况下,开启梯度计算的Tensor变量是会在GPU保持他的历史数据的,所以在编程或者调试过程中应该尽力避免在循环中累加梯度信息. 下面举个栗子: 上代

  • pytorch对可变长度序列的处理方法详解

    主要是用函数torch.nn.utils.rnn.PackedSequence()和torch.nn.utils.rnn.pack_padded_sequence()以及torch.nn.utils.rnn.pad_packed_sequence()来进行的,分别来看看这三个函数的用法. 1.torch.nn.utils.rnn.PackedSequence() NOTE: 这个类的实例不能手动创建.它们只能被 pack_padded_sequence() 实例化. PackedSequence

  • 在Pytorch中计算自己模型的FLOPs方式

    https://github.com/Lyken17/pytorch-OpCounter 安装方法很简单: pip install thop 基本用法: from torchvision.models import resnet50from thop import profile model = resnet50() flops, params = profile(model, input_size=(1, 3, 224,224)) 对自己的module进行特别的计算: class YourMo

  • Pytorch 实现计算分类器准确率(总分类及子分类)

    分类器平均准确率计算: correct = torch.zeros(1).squeeze().cuda() total = torch.zeros(1).squeeze().cuda() for i, (images, labels) in enumerate(train_loader): images = Variable(images.cuda()) labels = Variable(labels.cuda()) output = model(images) prediction = to

  • 在pytorch 中计算精度、回归率、F1 score等指标的实例

    pytorch中训练完网络后,需要对学习的结果进行测试.官网上例程用的方法统统都是正确率,使用的是torch.eq()这个函数. 但是为了更精细的评价结果,我们还需要计算其他各个指标.在把官网API翻了一遍之后发现并没有用于计算TP,TN,FP,FN的函数... 在动了无数歪脑筋之后,心想pytorch完全支持numpy,那能不能直接进行判断,试了一下果然可以,上代码: # TP predict 和 label 同时为1 TP += ((pred_choice == 1) & (target.d

  • PyTorch在Windows环境搭建的方法步骤

    一.安装Anaconda 3.5 Anaconda是一个用于科学计算的Python发行版,支持Linux.Mac和Window系统,提供了包管理与环境管理的功能,可以很方便地解决Python并存.切换,以及各种第三方包安装的问题. 二.下载和安装 个人建议推荐在清华的镜像来下载.选择合适你的版本下载,我使用的是Anaoonda3-5.1.0-Windows-x86_64.exe 可能安装速度有点慢,不太清楚是我电脑系统盘快慢的原因还是什么. 环境变量配置 将D:\ProgramData\Anac

  • SQL年龄计算的两种方法实例

    目录 第一种方法: 第二种方法: 总结 第一种方法: 用DATEDIFF函数,DATEDIFF(YEAR,beginDate,endDate). 测试语句: DECLARE @birthdayDate DATE DECLARE @endDate DATE DECLARE @age INT SET @birthdayDate ='2003-08-08' SET @endDate = '2008-07-08' SET @age = DATEDIFF(YEAR,@birthdayDate,@endDa

  • JS手机端touch事件计算滑动距离的方法示例

    本文实例讲述了JS手机端touch事件计算滑动距离的方法.分享给大家供大家参考,具体如下: 计算手势在手机屏幕上滑动时,手势滑动的距离,代码如下: function wetherScroll(){ var startX = startY = endX =endY =0; var body=document.getElementsByTagName("body"); body.bind('touchstart',function(event){ var touch = event.tar

随机推荐