如何在 Matplotlib 中更改绘图背景的实现

介绍

Matplotlib是Python中使用最广泛的数据可视化库之一。无论是简单还是复杂的可视化项目,它都是大多数人的首选库。

在本教程中,我们将研究如何在Matplotlib中更改绘图的背景。

导入数据和库

让我们首先导入所需的库。显然,我们将需要Matplotlib,并且将使用Pandas读取数据:

import matplotlib.pyplot as plt
import pandas as pd

具体来说,我们将使用Seattle Weather Datasethttps://www.kaggle.com/rtatman/did-it-rain-in-seattle-19482017)这个数据集:

weather_data = pd.read_csv("seattleWeather.csv")
print(weather_data.head())
   DATE PRCP TMAX TMIN RAIN
0 1948-01-01 0.47 51 42 True
1 1948-01-02 0.59 45 36 True
2 1948-01-03 0.42 45 35 True
3 1948-01-04 0.31 45 34 True
4 1948-01-05 0.17 45 32 True

创建绘图

现在,让我们创建一个简单的Matplotlib 散点图,其中包含一些我们想要可视化的变量:

PRCP = weather_data['PRCP']
TMAX = weather_data['TMAX']
TMIN = weather_data['TMIN']

现在,我们将在最低温度和降水之间构建一个散点图,并使用PyPlot中的show()函数将其显示。

我们生成的图形是没什么问题,但看起来有点普通。让我们尝试重新自定义它。本文中使用两种不同的方法来自定义绘图的背景。

在Matplotlib中更改绘图背景

现在,让我们继续更改该绘图的背景。我们可以使用两种不同的方法来做到这一点。我们可以更改当前设置为white的底部颜色。或者,我们可以使用imshow()输入图片。

在Matplotlib中更改轴背景

首先让我们更改底部的颜色。这可以通过set()函数,传入face参数及其新值来完成,也可以通过专用的set_facecolor()函数来完成:

ax = plt.axes()
ax.set_facecolor("orange")
# OR
ax.set(facecolor = "orange")

plt.scatter(TMIN, PRCP)
plt.show()

这两种方法均会产生相同的结果,因为它们都在后台调用相同的函数。

在Matplotlib中更改绘图背景

如果要设置图形的背景并且需要使轴透明,可以在创建图形时使用set_alpha()参数来完成。让我们创建一个图形和一个轴对象。当然,您也可以使用set()函数,并传递alpha属性。

整个图形的颜色将为蓝色,我们首先将轴对象的alpha设置为1.0,这意味着完全不透明。我们将轴对象着色为橙色,从而在蓝色图中为我们提供了橙色背景:

fig = plt.figure()
fig.patch.set_facecolor('blue')
fig.patch.set_alpha(0.6)

ax = fig.add_subplot(111)
ax.patch.set_facecolor('orange')
ax.patch.set_alpha(1.0)

plt.scatter(TMIN, PRCP)
plt.show()

现在,让我们看看将alpha调整为0.0时会发生什么:

fig = plt.figure()
fig.patch.set_facecolor('blue')
fig.patch.set_alpha(0.6)

ax = fig.add_subplot(111)
ax.patch.set_facecolor('orange')
ax.patch.set_alpha(0.0)

plt.scatter(TMIN, PRCP)
plt.show()

注意绘图本身的背景现在是透明的。

将图像添加到Matplotlib中的绘图背景

如果您想将图像用作绘图的背景,则可以使用PyPlot的imread()函数来完成。此函数将图像加载到Matplotlib中,该图像可与```imshow()``函数一起显示。

为了在图像上方绘制,必须指定图像的范围。默认情况下,Matplotlib使用图像的左上角作为图像的原点。我们可以给imshow()函数提供一个点列表,指定应该显示图像的哪个区域。与子图组合时,可以在图像上方插入另一个图。

让我们使用下雨的图像作为背景:

img = plt.imread("rain.jpg")
fig, ax = plt.subplots()
ax.imshow(img, extent=[-5, 80, -5, 30])
ax.scatter(TMIN, PRCP, color="#ebb734")
plt.show()

范围参数按此顺序接受的参数包括:horizontal_minhorizontal_maxvertical_minvertical_max)。在这里,我们读取了图像,将其裁剪并使用imshow()在轴上显示。

小结

在本教程中,我们介绍了使用Python和Matplotlib更改绘图背景的几种方法。

到此这篇关于如何在 Matplotlib 中更改绘图背景的文章就介绍到这了,更多相关如何在 Matplotlib 中更改绘图背景内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • Python利用matplotlib生成图片背景及图例透明的效果

    前言 最近工作中遇到一个需求,在使用matplotlib生成图片,想要背景透明,而且图例部分也显示透明效果,通过查找相关资料找到了大概的设置方法,特此记录,方便自己或者有需要的朋友们参考学习. 示例代码 # coding=utf-8 # matplotlib背景透明示例图 # python 3.5 import numpy as np import matplotlib.pyplot as plt from pylab import mpl import scipy.stats as stats

  • python中matplotlib条件背景颜色的实现

    如何根据图表中没有的变量更改折线图的背景颜色?例如,如果我有以下数据帧: import numpy as np import pandas as pd dates = pd.date_range('20000101', periods=800) df = pd.DataFrame(index=dates) df['A'] = np.cumsum(np.random.randn(800)) df['B'] = np.random.randint(-1,2,size=800) 如果我做df.A的折线

  • Python matplotlib生成图片背景透明的示例代码

    使用matplotlib生成图片,想要背景透明,而且图例部分也显示透明效果,找到了大概的设置方法,特此记录. # coding=utf-8 # matplotlib背景透明示例图 # python 3.5 import numpy as np import matplotlib.pyplot as plt from pylab import mpl import scipy.stats as stats # 设置中文字体 mpl.rcParams['font.sans-serif'] = ['S

  • Python的matplotlib绘图如何修改背景颜色的实现

    在主图中背景颜色不知道怎么改,plt.plot()中没有axisbg参数. 但是子图可以对plt.subplot的参数做修改,下面是对子图的背景颜色修改代码 import matplotlib.pyplot as plt import numpy as np # Fixing random state for reproducibility np.random.seed(19680801) dt = 0.01 t = np.arange(0, 30, dt) nse1 = np.random.r

  • 如何在 Matplotlib 中更改绘图背景的实现

    介绍 Matplotlib是Python中使用最广泛的数据可视化库之一.无论是简单还是复杂的可视化项目,它都是大多数人的首选库. 在本教程中,我们将研究如何在Matplotlib中更改绘图的背景. 导入数据和库 让我们首先导入所需的库.显然,我们将需要Matplotlib,并且将使用Pandas读取数据: import matplotlib.pyplot as plt import pandas as pd 具体来说,我们将使用Seattle Weather Dataset(https://ww

  • python 如何在 Matplotlib 中绘制垂直线

    介绍 Matplotlib是Python中使用最广泛的数据可视化库之一.Matplotlib的受欢迎程度大部分来自其自定义选项.您可以调整其对象层次结构中的几乎任何元素. 在本教程中,我们将研究如何在Matplotlib图上绘制垂直线,这使我们能够标记和突出显示图的某些区域,而无需缩放或更改轴范围. 创建图 让我们首先用一些随机数据创建一个简单的图: import matplotlib.pyplot as plt import numpy as np fig, ax = plt.subplots

  • Linux如何在Vim中更改颜色和主题

    Vim是我们在Linux中非常常用的一款文本编辑器.Vim 是一款免费.开源的文本编辑器,它的功能和许多其他的文本编辑器大致相同,比如 Sublime 和 Notepad++ .Vim既可以在命令行中执行,也可以在图形界面中操作. Vim 的教程有很多,本文我们主要讲的是如何更改 Vim 的颜色和主题. Vim 对于初学者来讲的话,其实不是非常友好.但如果你熟练使用了 Vim 之后,你就会发现,你再也离不开 Vim 了. Vim的主题的什么东西? 所谓的主题,其实本质上就是一种配色方案,也就是一

  • Oracle Faq(如何在ORACLE中更改表的列名和顺序 )

    如需转载,请注明出处!用过ORACLE的人都知道,要想在ORACLE中更改表的列名和顺序可是一件很烦琐的事,下面给大家提供一种简单的方法. SQL> select object_id from all_objects where owner='SCOTT' and object_name='T1'; OBJECT_ID----------6067SQL> select obj#,col#,name from sys.col$ where obj#=6067; OBJ# COL#--------

  • Android如何在Gradle中更改APK文件名详解

    前言 本文主要给大家介绍了关于Android在Gradle中更改APK文件名的相关内容,分享出来供大家参考学习,下面话不多说了,来一起看看详细的介绍: 默认情况下,Android Studio中的Gradle构建命名为.apk文件app-release.apk.对应用程序build.gradle文件进行了一些小的更改,可以将.apk名称更改为<app name>-release-<version>.apk. 需要在app的目录下面修改build.gradle文件. 第一步是将pro

  • mac在matplotlib中显示中文的操作方法

    Matplotlib 是一个 Python 的 2D绘图库,它以各种硬拷贝格式和跨平台的交互式环境生成出版质量级别的图形   . 通过 Matplotlib,开发者可以仅需要几行代码,便可以生成绘图,直方图,功率谱,条形图,错误图,散点图等. 下面开始今天的正文. 首先保证电脑里是否安装了中文字体,然后找到他们!! 具体步骤如下: 先打开终端,command+空格 搜索 ter,然后会蹦出终端,点开 输入 fc-list :lang=zh 如果显示command not found 输入 con

  • 如何在Python中利用matplotlib.pyplot画出函数图详解

    目录 0.引言 1.绘图 (1)导入所需库 (2)设置函数 (3)plt.figure() (4)plt.plot(),plt.axhline(),plt.axvline(),plt.axhspan(),plt.axvspan() (5)设置 x,y 轴的数值范围 (6)设置 x,y 轴的标题文本 (7)设置图例和标题 (8)plt.show() 2运行结果 总结 0.引言 为了让用户能够使用python时,方便地绘制 2D 图表,PYTHON的模块中提供Matplotlib模块中所含的子库py

  • 详解matplotlib中pyplot和面向对象两种绘图模式之间的关系

    matplotlib有两种绘图方式,一种是依托matplotlib.pyplot模块实现类似matlab绘图指令的绘图方式,一种是面向对象式绘图,依靠FigureCanvas(画布). Figure (图像). Axes (轴域) 等对象绘图. 这两种方式之间并不是完全独立的,而是通过某种机制进行了联结,pylot绘图模式其实隐式创建了面向对象模式的相关对象,其中的关键是matplotlib._pylab_helpers模块中的单例类Gcf,它的作用是追踪当前活动的画布及图像. 因此,可以说ma

  • 详解Python中matplotlib模块的绘图方式

    目录 1.matplotlib之父简介 2.matplotlib图形结构 3.matplotlib两种画绘图方法 方法一:使用matplotlib.pyplot 方法二:面向对象方法 1.matplotlib之父简介 matplotlib之父John D. Hunter已经去世,他的一生辉煌而短暂,但是他开发的的该开源库还在继续着辉煌.国内介绍的资料太少了,查阅了一番整理如下: 1968 出身于美国的田纳西州代尔斯堡. 之后求学于普林斯顿大学. 2003年发布Matplotlib 0.1版,初衷

  • opencv转换颜色空间更改图片背景

    本文实例为大家分享了opencv转换颜色空间更改图片背景的具体代码,供大家参考,具体内容如下 思路: 1.将BGR转换为HSV颜色空间 2.设置掩模 3.位运算 这里以更改摩托罗拉logo背景为例,图片在必应图片搜索得知,具体代码如下: import numpy as np import cv2 from imageio import imread import matplotlib.pyplot as plt def show(img,winname = "img"): cv2.na

随机推荐