tensorflow实现将ckpt转pb文件的方法

本博客实现将自己训练保存的ckpt模型转换为pb文件,该方法适用于任何ckpt模型,当然你需要确定ckpt模型输入/输出的节点名称。

使用 tf.train.saver()保存模型时会产生多个文件,会把计算图的结构和图上参数取值分成了不同的文件存储。这种方法是在TensorFlow中是最常用的保存方式。

例如:下面的代码运行后,会在save目录下保存了四个文件:

import tensorflow as tf
# 声明两个变量
v1 = tf.Variable(tf.random_normal([1, 2]), name="v1")
v2 = tf.Variable(tf.random_normal([2, 3]), name="v2")
init_op = tf.global_variables_initializer() # 初始化全部变量
saver = tf.train.Saver() # 声明tf.train.Saver类用于保存模型
with tf.Session() as sess:
 sess.run(init_op)
 print("v1:", sess.run(v1)) # 打印v1、v2的值一会读取之后对比
 print("v2:", sess.run(v2))
 saver_path = saver.save(sess, "save/model.ckpt") # 将模型保存到save/model.ckpt文件
 print("Model saved in file:", saver_path)

其中,checkpoint是检查点文件,文件保存了一个目录下所有的模型文件列表;
model.ckpt.meta文件保存了TensorFlow计算图的结构,可以理解为神经网络的网络结构,该文件可以被 tf.train.import_meta_graph 加载到当前默认的图来使用。
ckpt.data : 保存模型中每个变量的取值
   但很多时候,我们需要将TensorFlow的模型导出为单个文件(同时包含模型结构的定义与权重),方便在其他地方使用(如在Android中部署网络)。利用tf.train.write_graph()默认情况下只导出了网络的定义(没有权重),而利用tf.train.Saver().save()导出的文件graph_def与权重是分离的,因此需要采用别的方法。 我们知道,graph_def文件中没有包含网络中的Variable值(通常情况存储了权重),但是却包含了constant值,所以如果我们能把Variable转换为constant,即可达到使用一个文件同时存储网络架构与权重的目标。

TensoFlow为我们提供了convert_variables_to_constants()方法,该方法可以固化模型结构,将计算图中的变量取值以常量的形式保存,而且保存的模型可以移植到Android平台。

一、CKPT 转换成 PB格式

将CKPT 转换成 PB格式的文件的过程可简述如下:

通过传入 CKPT 模型的路径得到模型的图和变量数据
通过 import_meta_graph 导入模型中的图
通过 saver.restore 从模型中恢复图中各个变量的数据
通过 graph_util.convert_variables_to_constants 将模型持久化
 下面的CKPT 转换成 PB格式例子,是我训练GoogleNet InceptionV3模型保存的ckpt转pb文件的例子,训练过程可参考博客:《使用自己的数据集训练GoogLenet InceptionNet V1 V2 V3模型(TensorFlow)》:

def freeze_graph(input_checkpoint,output_graph):
 '''
 :param input_checkpoint:
 :param output_graph: PB模型保存路径
 :return:
 '''
 # checkpoint = tf.train.get_checkpoint_state(model_folder) #检查目录下ckpt文件状态是否可用
 # input_checkpoint = checkpoint.model_checkpoint_path #得ckpt文件路径

 # 指定输出的节点名称,该节点名称必须是原模型中存在的节点
 output_node_names = "InceptionV3/Logits/SpatialSqueeze"
 saver = tf.train.import_meta_graph(input_checkpoint + '.meta', clear_devices=True)
 graph = tf.get_default_graph() # 获得默认的图
 input_graph_def = graph.as_graph_def() # 返回一个序列化的图代表当前的图

 with tf.Session() as sess:
 saver.restore(sess, input_checkpoint) #恢复图并得到数据
 output_graph_def = graph_util.convert_variables_to_constants( # 模型持久化,将变量值固定
 sess=sess,
 input_graph_def=input_graph_def,# 等于:sess.graph_def
 output_node_names=output_node_names.split(","))# 如果有多个输出节点,以逗号隔开

 with tf.gfile.GFile(output_graph, "wb") as f: #保存模型
 f.write(output_graph_def.SerializeToString()) #序列化输出
 print("%d ops in the final graph." % len(output_graph_def.node)) #得到当前图有几个操作节点

 # for op in graph.get_operations():
 # print(op.name, op.values())

说明:

1、函数freeze_graph中,最重要的就是要确定“指定输出的节点名称”,这个节点名称必须是原模型中存在的节点,对于freeze操作,我们需要定义输出结点的名字。因为网络其实是比较复杂的,定义了输出结点的名字,那么freeze的时候就只把输出该结点所需要的子图都固化下来,其他无关的就舍弃掉。因为我们freeze模型的目的是接下来做预测。所以,output_node_names一般是网络模型最后一层输出的节点名称,或者说就是我们预测的目标。

2、在保存的时候,通过convert_variables_to_constants函数来指定需要固化的节点名称,对于鄙人的代码,需要固化的节点只有一个:output_node_names。注意节点名称与张量的名称的区别,例如:“input:0”是张量的名称,而"input"表示的是节点的名称。

3、源码中通过graph = tf.get_default_graph()获得默认的图,这个图就是由saver = tf.train.import_meta_graph(input_checkpoint + '.meta', clear_devices=True)恢复的图,因此必须先执行tf.train.import_meta_graph,再执行tf.get_default_graph() 。

4、实质上,我们可以直接在恢复的会话sess中,获得默认的网络图,更简单的方法,如下:

def freeze_graph(input_checkpoint,output_graph):
 '''
 :param input_checkpoint:
 :param output_graph: PB模型保存路径
 :return:
 '''
 # checkpoint = tf.train.get_checkpoint_state(model_folder) #检查目录下ckpt文件状态是否可用
 # input_checkpoint = checkpoint.model_checkpoint_path #得ckpt文件路径

 # 指定输出的节点名称,该节点名称必须是原模型中存在的节点
 output_node_names = "InceptionV3/Logits/SpatialSqueeze"
 saver = tf.train.import_meta_graph(input_checkpoint + '.meta', clear_devices=True)

 with tf.Session() as sess:
 saver.restore(sess, input_checkpoint) #恢复图并得到数据
 output_graph_def = graph_util.convert_variables_to_constants( # 模型持久化,将变量值固定
 sess=sess,
 input_graph_def=sess.graph_def,# 等于:sess.graph_def
 output_node_names=output_node_names.split(","))# 如果有多个输出节点,以逗号隔开

 with tf.gfile.GFile(output_graph, "wb") as f: #保存模型
 f.write(output_graph_def.SerializeToString()) #序列化输出
 print("%d ops in the final graph." % len(output_graph_def.node)) #得到当前图有几个操作节点

调用方法很简单,输入ckpt模型路径,输出pb模型的路径即可:

# 输入ckpt模型路径
    input_checkpoint='models/model.ckpt-10000'
    # 输出pb模型的路径
    out_pb_path="models/pb/frozen_model.pb"
    # 调用freeze_graph将ckpt转为pb
    freeze_graph(input_checkpoint,out_pb_path)

5、上面以及说明:在保存的时候,通过convert_variables_to_constants函数来指定需要固化的节点名称,对于鄙人的代码,需要固化的节点只有一个:output_node_names。因此,其他网络模型,也可以通过简单的修改输出的节点名称output_node_names,将ckpt转为pb文件 。

PS:注意节点名称,应包含name_scope 和 variable_scope命名空间,并用“/”隔开,如"InceptionV3/Logits/SpatialSqueeze"

二、 pb模型预测

下面是预测pb模型的代码

def freeze_graph_test(pb_path, image_path):
 '''
 :param pb_path:pb文件的路径
 :param image_path:测试图片的路径
 :return:
 '''
 with tf.Graph().as_default():
 output_graph_def = tf.GraphDef()
 with open(pb_path, "rb") as f:
 output_graph_def.ParseFromString(f.read())
 tf.import_graph_def(output_graph_def, name="")
 with tf.Session() as sess:
 sess.run(tf.global_variables_initializer())

 # 定义输入的张量名称,对应网络结构的输入张量
 # input:0作为输入图像,keep_prob:0作为dropout的参数,测试时值为1,is_training:0训练参数
 input_image_tensor = sess.graph.get_tensor_by_name("input:0")
 input_keep_prob_tensor = sess.graph.get_tensor_by_name("keep_prob:0")
 input_is_training_tensor = sess.graph.get_tensor_by_name("is_training:0")

 # 定义输出的张量名称
 output_tensor_name = sess.graph.get_tensor_by_name("InceptionV3/Logits/SpatialSqueeze:0")

 # 读取测试图片
 im=read_image(image_path,resize_height,resize_width,normalization=True)
 im=im[np.newaxis,:]
 # 测试读出来的模型是否正确,注意这里传入的是输出和输入节点的tensor的名字,不是操作节点的名字
 # out=sess.run("InceptionV3/Logits/SpatialSqueeze:0", feed_dict={'input:0': im,'keep_prob:0':1.0,'is_training:0':False})
 out=sess.run(output_tensor_name, feed_dict={input_image_tensor: im,
 input_keep_prob_tensor:1.0,
 input_is_training_tensor:False})
 print("out:{}".format(out))
 score = tf.nn.softmax(out, name='pre')
 class_id = tf.argmax(score, 1)
 print "pre class_id:{}".format(sess.run(class_id))

说明:

1、与ckpt预测不同的是,pb文件已经固化了网络模型结构,因此,即使不知道原训练模型(train)的源码,我们也可以恢复网络图,并进行预测。恢复模型十分简单,只需要从读取的序列化数据中导入网络结构即可:

tf.import_graph_def(output_graph_def, name="")
2、但必须知道原网络模型的输入和输出的节点名称(当然了,传递数据时,是通过输入输出的张量来完成的)。由于InceptionV3模型的输入有三个节点,因此这里需要定义输入的张量名称,它对应网络结构的输入张量:

input_image_tensor = sess.graph.get_tensor_by_name("input:0")
input_keep_prob_tensor = sess.graph.get_tensor_by_name("keep_prob:0")
input_is_training_tensor = sess.graph.get_tensor_by_name("is_training:0")
以及输出的张量名称:

output_tensor_name = sess.graph.get_tensor_by_name("InceptionV3/Logits/SpatialSqueeze:0")

3、预测时,需要feed输入数据:

# 测试读出来的模型是否正确,注意这里传入的是输出和输入节点的tensor的名字,不是操作节点的名字
# out=sess.run("InceptionV3/Logits/SpatialSqueeze:0", feed_dict={'input:0': im,'keep_prob:0':1.0,'is_training:0':False})
out=sess.run(output_tensor_name, feed_dict={input_image_tensor: im,
                                            input_keep_prob_tensor:1.0,
                                            input_is_training_tensor:False})

4、其他网络模型预测时,也可以通过修改输入和输出的张量的名称 。

PS:注意张量的名称,即为:节点名称+“:”+“id号”,如"InceptionV3/Logits/SpatialSqueeze:0"

完整的CKPT 转换成 PB格式和预测的代码如下:

# -*-coding: utf-8 -*-
"""
 @Project: tensorflow_models_nets
 @File : convert_pb.py
 @Author : panjq
 @E-mail : pan_jinquan@163.com
 @Date : 2018-08-29 17:46:50
 @info :
 -通过传入 CKPT 模型的路径得到模型的图和变量数据
 -通过 import_meta_graph 导入模型中的图
 -通过 saver.restore 从模型中恢复图中各个变量的数据
 -通过 graph_util.convert_variables_to_constants 将模型持久化
"""

import tensorflow as tf
from create_tf_record import *
from tensorflow.python.framework import graph_util

resize_height = 299 # 指定图片高度
resize_width = 299 # 指定图片宽度
depths = 3

def freeze_graph_test(pb_path, image_path):
 '''
 :param pb_path:pb文件的路径
 :param image_path:测试图片的路径
 :return:
 '''
 with tf.Graph().as_default():
 output_graph_def = tf.GraphDef()
 with open(pb_path, "rb") as f:
 output_graph_def.ParseFromString(f.read())
 tf.import_graph_def(output_graph_def, name="")
 with tf.Session() as sess:
 sess.run(tf.global_variables_initializer())

 # 定义输入的张量名称,对应网络结构的输入张量
 # input:0作为输入图像,keep_prob:0作为dropout的参数,测试时值为1,is_training:0训练参数
 input_image_tensor = sess.graph.get_tensor_by_name("input:0")
 input_keep_prob_tensor = sess.graph.get_tensor_by_name("keep_prob:0")
 input_is_training_tensor = sess.graph.get_tensor_by_name("is_training:0")

 # 定义输出的张量名称
 output_tensor_name = sess.graph.get_tensor_by_name("InceptionV3/Logits/SpatialSqueeze:0")

 # 读取测试图片
 im=read_image(image_path,resize_height,resize_width,normalization=True)
 im=im[np.newaxis,:]
 # 测试读出来的模型是否正确,注意这里传入的是输出和输入节点的tensor的名字,不是操作节点的名字
 # out=sess.run("InceptionV3/Logits/SpatialSqueeze:0", feed_dict={'input:0': im,'keep_prob:0':1.0,'is_training:0':False})
 out=sess.run(output_tensor_name, feed_dict={input_image_tensor: im,
 input_keep_prob_tensor:1.0,
 input_is_training_tensor:False})
 print("out:{}".format(out))
 score = tf.nn.softmax(out, name='pre')
 class_id = tf.argmax(score, 1)
 print "pre class_id:{}".format(sess.run(class_id))

def freeze_graph(input_checkpoint,output_graph):
 '''
 :param input_checkpoint:
 :param output_graph: PB模型保存路径
 :return:
 '''
 # checkpoint = tf.train.get_checkpoint_state(model_folder) #检查目录下ckpt文件状态是否可用
 # input_checkpoint = checkpoint.model_checkpoint_path #得ckpt文件路径

 # 指定输出的节点名称,该节点名称必须是原模型中存在的节点
 output_node_names = "InceptionV3/Logits/SpatialSqueeze"
 saver = tf.train.import_meta_graph(input_checkpoint + '.meta', clear_devices=True)

 with tf.Session() as sess:
 saver.restore(sess, input_checkpoint) #恢复图并得到数据
 output_graph_def = graph_util.convert_variables_to_constants( # 模型持久化,将变量值固定
 sess=sess,
 input_graph_def=sess.graph_def,# 等于:sess.graph_def
 output_node_names=output_node_names.split(","))# 如果有多个输出节点,以逗号隔开

 with tf.gfile.GFile(output_graph, "wb") as f: #保存模型
 f.write(output_graph_def.SerializeToString()) #序列化输出
 print("%d ops in the final graph." % len(output_graph_def.node)) #得到当前图有几个操作节点

 # for op in sess.graph.get_operations():
 # print(op.name, op.values())

def freeze_graph2(input_checkpoint,output_graph):
 '''
 :param input_checkpoint:
 :param output_graph: PB模型保存路径
 :return:
 '''
 # checkpoint = tf.train.get_checkpoint_state(model_folder) #检查目录下ckpt文件状态是否可用
 # input_checkpoint = checkpoint.model_checkpoint_path #得ckpt文件路径

 # 指定输出的节点名称,该节点名称必须是原模型中存在的节点
 output_node_names = "InceptionV3/Logits/SpatialSqueeze"
 saver = tf.train.import_meta_graph(input_checkpoint + '.meta', clear_devices=True)
 graph = tf.get_default_graph() # 获得默认的图
 input_graph_def = graph.as_graph_def() # 返回一个序列化的图代表当前的图

 with tf.Session() as sess:
 saver.restore(sess, input_checkpoint) #恢复图并得到数据
 output_graph_def = graph_util.convert_variables_to_constants( # 模型持久化,将变量值固定
 sess=sess,
 input_graph_def=input_graph_def,# 等于:sess.graph_def
 output_node_names=output_node_names.split(","))# 如果有多个输出节点,以逗号隔开

 with tf.gfile.GFile(output_graph, "wb") as f: #保存模型
 f.write(output_graph_def.SerializeToString()) #序列化输出
 print("%d ops in the final graph." % len(output_graph_def.node)) #得到当前图有几个操作节点

 # for op in graph.get_operations():
 # print(op.name, op.values())

if __name__ == '__main__':
 # 输入ckpt模型路径
 input_checkpoint='models/model.ckpt-10000'
 # 输出pb模型的路径
 out_pb_path="models/pb/frozen_model.pb"
 # 调用freeze_graph将ckpt转为pb
 freeze_graph(input_checkpoint,out_pb_path)

 # 测试pb模型
 image_path = 'test_image/animal.jpg'
 freeze_graph_test(pb_path=out_pb_path, image_path=image_path)

三、源码下载和资料推荐

1、训练方法
     上面的CKPT 转换成 PB格式例子,是我训练GoogleNet InceptionV3模型保存的ckpt转pb文件的例子,训练过程可参考博客:

《使用自己的数据集训练GoogLenet InceptionNet V1 V2 V3模型(TensorFlow)》:https://blog.csdn.net/guyuealian/article/details/81560537

2、Github地址
Github源码:https://github.com/PanJinquan/tensorflow_models_nets  中的convert_pb.py文件

预训练模型下载地址:http://xiazai.jb51.net/202004/yuanma/googlenet_inception_jb51.rar

3、将模型移植Android的方法
     pb文件是可以移植到Android平台运行的,其方法,可参考:

《将tensorflow训练好的模型移植到Android (MNIST手写数字识别)》

参考:

[1] https://www.jb51.net/article/185209.htm

【2】https://www.jb51.net/article/185206.htm

到此这篇关于tensorflow实现将ckpt转pb文件的方法的文章就介绍到这了,更多相关tensorflow ckpt转pb文件内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • tensorflow使用freeze_graph.py将ckpt转为pb文件的方法

    废话少说直接上代码样例如下 import tensorflow as tf import os from tensorflow.python.tools import freeze_graph # 本来这个model本无需解释太多,但是这么多人不能耐下心来看,那么我简单的说一下吧 # network是你们自己定义的模型结构而已 # ps: # def network(input): # return tf.layers.max_pooling2d(input, 2, 2) from model

  • tensorflow的ckpt及pb模型持久化方式及转化详解

    使用tensorflow训练模型的时候,模型持久化对我们来说非常重要. 如果我们的模型比较复杂,需要的数据比较多,那么在模型的训练时间会耗时很长.如果在训练过程中出现了模型不可预期的错误,导致训练意外终止,那么我们将会前功尽弃.为了解决这一问题,我们可以使用模型持久化(保存为ckpt文件格式)来保存我们在训练过程中的临时数据.. 如果我们训练出的模型需要提供给用户做离线预测,那么我们只需要完成前向传播过程.这个时候我们就可以使用模型持久化(保存为pb文件格式)来只保存前向传播过程中的变量并将变量

  • tensorflow ckpt模型和pb模型获取节点名称,及ckpt转pb模型实例

    ckpt from tensorflow.python import pywrap_tensorflow checkpoint_path = 'model.ckpt-8000' reader = pywrap_tensorflow.NewCheckpointReader(checkpoint_path) var_to_shape_map = reader.get_variable_to_shape_map() for key in var_to_shape_map: print("tensor_

  • tensorflow模型文件(ckpt)转pb文件的方法(不知道输出节点名)

    网上关于tensorflow模型文件ckpt格式转pb文件的帖子很多,本人几乎尝试了所有方法,最后终于成功了,现总结如下.方法无外乎下面两种: 使用tensorflow.python.tools.freeze_graph.freeze_graph 使用graph_util.convert_variables_to_constants 1.tensorflow模型的文件解读 使用tensorflow训练好的模型会自动保存为四个文件,如下 checkpoint:记录近几次训练好的模型结果(名称).

  • tensorflow实现将ckpt转pb文件的方法

    本博客实现将自己训练保存的ckpt模型转换为pb文件,该方法适用于任何ckpt模型,当然你需要确定ckpt模型输入/输出的节点名称. 使用 tf.train.saver()保存模型时会产生多个文件,会把计算图的结构和图上参数取值分成了不同的文件存储.这种方法是在TensorFlow中是最常用的保存方式. 例如:下面的代码运行后,会在save目录下保存了四个文件: import tensorflow as tf # 声明两个变量 v1 = tf.Variable(tf.random_normal(

  • TensorFlow:将ckpt文件固化成pb文件教程

    本文是将yolo3目标检测框架训练出来的ckpt文件固化成pb文件,主要利用了GitHub上的该项目. 为什么要最终生成pb文件呢?简单来说就是直接通过tf.saver保存行程的ckpt文件其变量数据和图是分开的.我们知道TensorFlow是先画图,然后通过placeholde往图里面喂数据.这种解耦形式存在的方法对以后的迁移学习以及对程序进行微小的改动提供了极大的便利性.但是对于训练好,以后不再改变的话这种存在就不再需要.一方面,ckpt文件储存的数据都是变量,既然我们不再改动,就应当让其变

  • tensorflow从ckpt和从.pb文件读取变量的值方式

    最近在学习tensorflow自带的量化工具的相关知识,其中遇到的一个问题是从tensorflow保存好的ckpt文件或者是保存后的.pb文件(这里的pb是把权重和模型保存在一起的pb文件)读取权重,查看量化后的权重是否变成整形. 因此将自己解决这个问题记录下来,为了下一次遇到时,可以有所参考,也希望给有需要的同学一个可能的参考. (1) 从保存的ckpt读取变量的值(以读取保存的第一个权重为例) from tensorflow.python import pywrap_tensorflow i

  • 如何使用C#将Tensorflow训练的.pb文件用在生产环境详解

    前言 TensorFlow是Google开源的一款人工智能学习系统.为什么叫这个名字呢?Tensor的意思是张量,代表N维数组:Flow的意思是流,代表基于数据流图的计算.把N维数字从流图的一端流动到另一端的过程,就是人工智能神经网络进行分析和处理的过程. 训练了很久的Tf模型,终于要到生产环境中去考研一番了.今天花费了一些时间去研究tf的模型如何在生产环境中去使用.大概整理了这些方法. 继续使用分步骤保存了的ckpt文件 这个貌似脱离不了tensorflow框架,而且生成的ckpt文件比较大,

  • tensorflow没有output结点,存储成pb文件的例子

    Tensorflow中保存成pb file 需要 使用函数 graph_util.convert_variables_to_constants(sess, sess.graph_def, output_node_names=[]) []中需要填写你需要保存的结点.如果保存的结点在神经网络中没有被显示定义该怎么办? 例如我使用了tf.contrib.slim或者keras,在tf的高层很多情况下都会这样. 在写神经网络时,只需要简单的一层层传导,一个slim.conv2d层就包含了kernal,b

  • TensorFlow实现checkpoint文件转换为pb文件

    由于项目需要,需要将TensorFlow保存的模型从ckpt文件转换为pb文件. import os from tensorflow.python import pywrap_tensorflow from net2use import inception_resnet_v2_small#这里使用自己定义的模型函数即可 import tensorflow as tf if __name__=='__main__': pb_file = "./model/output.pb" ckpt_

随机推荐